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Abstract 

In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was 

studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) 

model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess 

the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to 

February 2016) was forecasted and compared with the observed rainfall values in this period. The 

determination coefficient of 99.86 percent (R
2
=0.9986) and positive correlation (P˂0.05) between the 

observed data and the predicted values by the ARMA (1,12) model illustrates the goodness of this 

model in prediction. Finally, based on this model, monthly rainfall values were predicted for the next 

60 months that the model had not been trained. Results showed the forecasting ability of the chosen 

model. So, it can conclude that the ARMA (1,12) model is the best-fitted model overall.  
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1. Introduction 

Assessment and prediction of various 

weather and climatic parameters are vital in 

irrigation scheduling. Due to climate change, 

understanding of changes in evaporation, 

rainfall, drought, etc. is critical for long term 

agricultural and environmental planning 

(Hooshmand et al. 2013; Salari et al. 2015; 

Bahrami et al. 2018). Rainfall is the result of 

many complex physical processes inducing 

particular features and make its observation 

complex. The investigation and analysis of 

precipitation is so essential for climatic 

information forecast (Radhakrishnan and 

Dinesh 2006; Bahrami et al. 2014), and 

accurate forecasting of precipitation is 

extremely important for proper mitigation and 

management of floods, droughts, environmental 

flows, water demand by different sectors, 

maintaining reservoir levels, and disasters, 

particularly in arid environment (Feng et al. 

2015; Sadeghian et al. 2016). 

In recent decades, several methods which 

have been used as suitable tools for modeling 

and forecasting the climatic information such as 

precipitation were basically linear, conceptual 

and statistical models (Dastorani et al. 2016). 

Among the methods, time series modeling is an 

important method in simulation, prediction and 

decision making of hydrology cycle 

components (Dastorani et al. 2016).  

A time series is a set of observations x, each 

one being recorded at a specific time t. A 

discrete-time time series is one in which the set 
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Comparative Study Among Different …                                                                                                                                    30 

 

 

T0 of times at which observations are made is a 

discrete set, as is the case, for example, when 

observations are made at fixed time intervals.  

This method is used to describe data using 

graphical and statistical techniques, to designate 

the best statistical models to describe the data 

generating process, to predict the future 

amounts of a series and controlling a given 

process (Dastorani et al. 2016). 

Time series models building contains three 

steps: identification, assessment and error 

detection (Shirmohammadi et al. 2013). 

The assumption in time series analysis is that 

data consists of a systematic pattern (usually an 

identifiable component set) and random noise 

(error) which usually makes the pattern difficult 

to identify. Time series analysis methods 

usually import some method of filtering out 

noise in order to make the pattern more salient 

(Meher and Jha 2013).  

Many scientists have used time series 

theory to address hydrological problems 

(Gorman and Toman 1966; Salas et al. 1980; 

Bras and Rodriguez- Iturbe (1985); Galeati 

1990; Lin and Lee 1992; Lall and Bosworth 

1993; Hsu et al. 1995; Dastorani et al. 2016; 

Davidson et al. 2003). 

Meher and Jha (2013) developed a 

univariate time series autoregressive integrated 

moving average (ARIMA) model for (a) 

simulating and forecasting mean rainfall over 

the Mahanadi River Basin in India at 38 rain-

gauge stations in district towns across the basin. 

Farajzadeh et al. (2014) used Feed-forward 

Neural Network and Autocorrelation 

Regressive Integrated Moving Average 

(ARIMA) models to forecast the monthly 

rainfall in Urmia lake basin. 

Mirzavand and Ghazavi (2015) used several 

time series models to find the best model to 

forecast the ground-water level fluctuation. 

Dastorani et al. (2016) investigated the 

ability of different time series models including 

autoregressive (AR), moving average (MA), 

autoregressive moving average (ARMA), 

autoregressive integrated moving average 

(ARIMA), and seasonal autoregressive 

integrated moving average (SARIMA) in 

forecasting monthly rainfall for nine rainfall 

stations in North Khorasan province. 

Weesakul and Lowanichchai (2005) applied 

the ARIMA model to forecast annual rainfall at 

31 rainfall stations in Thailand. Mahsin et al. 

(2012) used a seasonal ARIMA model to 

forecast monthly rainfall in the Dhaka Division 

of Bangladesh. 

Modeling the climatic time series based on 

statistical models has confirmed by many 

researchers because these models are the 

appropriate selection for the area where nothing 

but the meteorological time series data is 

available (Dastorani et al. 2016). Statistical 

models like the Markov, Box-Jenkins (BJ), 

SARIMA, ARMA, periodic autoregressive 

(PAR), transfer function-noise (TFN) and 

periodic transfer function-noise (PTFN) are 

used for these aims (Box 1994; Brockwell and 

Davis 2010; Mirzavand and Ghazavi 2015; 

Dastorani et al. 2016). Several usages of these 

approaches have been accepted to be very 

beneficial techniques to forecast the rainfall 

data over time in many types of research 

(Radhakrishnan and Dinesh 2006; Soltani et al. 

2007; Willems 2009; Mair and Fares 2011; 

Dutta et al. 2012; Dastorani et al. 2016). The 

selection of an appropriate method for 

modeling and forecasting a phenomenon 

depends on various parameters such as data 

accuracy, time, cost, easiness of application of 

the model’s results, explanation of results and 

etc. (Mondal and Wasimi 2007; Dastorani et al. 

2016).  

In many studies, the time series models 

applied to simulate and forecast the 

precipitation but comparison of statistical time 

series models like AR, MA, ARMA, ARIMA, 

and SARIMA for rainfall forecasting was not 

reported. Therefore, the main goal of this 

research was to evaluate these models 

capability for rainfall forecasting in a semi-arid 

climate condition. 

 

2. Materials and Methods 

Study Area 

Shiraz station located in the south of Iran 

with geographical longitude: 52
o
 36՜  E, 

geographical latitude: 29
o
 32

՜
 N, and altitude: 
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1484 m (Fig. 1). Shiraz County has an area of 

1268 km
2
. According to De Martonne aridity 

index, the climate of the study area is semi-arid. 

The mean annual temperature is about 18 

degrees Celsius and the annual rainfall is 346 

mm, which is mostly concentrated in the winter 

months. In order to provide the data for 

modeling, monthly rainfall data of the station 

gathered from 1971 to 2016. We made time 

series plots and computed basic statistics to 

understand the statistical variations, trends, and 

seasonality at the synoptic station (Fig. 2).  

 

 

 

 
Fig. 1. A schematic map of the selected rainfall station 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Monthly rainfall data for Shiraz synoptic station 
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Time series models 

Universally, the data of time series models 

can have various shapes and represent various 

non-deterministic processes (Dastorani et al. 

2016). Utmost modeling of time series happens 

based on a linear method. AR, MA, and ARMA 

methods have a linear basis (Mirzavand and 

Ghazavi 2015; Dastorani et al. 2016). In the 

present study, AR, MA, and ARMA models 

tested and applied to evaluate the capability of 

these models in monthly rainfall forecasting 

using ITSM Software. 

 

AR model 

In the series where continuity is existent, 

that is the event outcome of         the 

period is dependent on the existent     period 

value and those past magnitudes, then for such 

a series, the observed sequences X1, X2, …, Xt 

is applied to fit an AR model. 

Autoregressive model represented as Eq. (1): 

 

1 1 2 2  t t t p t p tX X X X Z             (1) 

 

Where Ø1, Ø2,…, Øp are model coefficients 

and Zt is the random component of the data 

that pursues a random distribution with mean 

equal 0. Also, Zt is uncorrelated with {     
 }. (Dastorani et al. 2016). 

MA model 

Moving average model is simple covariance 

stationary and ergodic model can be used for a 

vast diversity of autocorrelation patterns 

(Dastorani et al. 2016). Moving Average 

model represented as Eq. (2): 

 

1 1 2 2   t t t t q t qX Z Z Z Z         (2) 

 

Where θ1, θ2, …, θq are model coefficients 

and Zt is the random component of the data 

that pursues a random distribution with mean 

equal 0 (Mirzavand and Ghazavi 2015; 

Dastorani et al. 2016). 

 

ARMA model 

The ARMA model is a combination of an 

AR and an MA model. ARMA model forms a 

type of linear models, which are vastly suitable 

and advantageous in parameterization. ARMA 

(p, q) model represented as Eq. (3): 

 

1 1 2 2 1 1 2 2   t t t p t p t t t q t qX X X ZX Z Z Z               

 (3) 

 

Where Øi is the     autoregressive 

coefficient, θj is the     moving average 

coefficient, it demonstrates the error part at 

time period t, and Zt refers the magnitude of 

rainfall observed or forecasted at time period t 

(Mirzavand and Ghazavi 2015; Dastorani et al. 

2016). 

There are four phases in identifying patterns 

of time series data. The first is to analyze and 

represent the properties of time series data, the 

second is to calculate and represent the 

properties of time series models, and the third is 

to synthesize these functions in order to fit 

models to data. The last phase contains 

controlling that the properties of the fitted 

model collate those of the data in a proper 

status. After finding an appropriate model, we 

used it in conjunction with the data to predict 

the future values of the series. 

 

Model selection 

To specify the best model among the class of 

plausible models, we used partial 

autocorrelation function (PACF), 

autocorrelation function (ACF) (Mirzavand and 

Ghazavi 2015), the Corrected Akaike 

Information Criterion (AICC) proposed by 

Akaike (1974), and coefficient of determination 

(R
2
). After consideration of ACF and PACF 

values, the model which had the minimum 

AICC value was considered as the best model 

for the Shiraz rainfall analysis. Also, there are 

some other model-choosing statistics in ITSM 

2000, such as BIC statistic. Actually, the BIC 

statistic (Schwarz 1978) is a Bayesian 

modification of the AICC statistic. The BIC is 

considered at the same time and applied in the 

same way as the AICC. Each information 

statistic represented as:  

 

2

,

2
ˆAICC =N log +

( 1)
p q

rN

N r


 
  (4) 
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2

,
ˆlog logp qBIC N r N     (5) 

Where 
2ˆ
  is the maximum likelihood 

estimator of 
2

 , and r = p+q+1 is the number 

of parameters estimated in the model, including 

a constant term. The second term in the first 

two equations is a penalty for increasing r. 

Therefore, the best model is the model 

adequately describes data and has fewest 

parameters. 

3. Results and Discussion 

Total of 540 samples obtained during the 

period of 1971- 2016 were used for the time 

series analysis of the Shiraz mean rainfall. Fig. 

2 shows that the variance of data is not stable. 

Also, the ACF and PACF plots of the original 

data, as presented in Fig. 3, indicates that the 

rainfall data reflects a seasonal cycle of period 

12. 

 

 
Fig. 3. (Left): Autocorrelation (ACF); (Right): Partial Autocorrelation (PACF) for original rainfall data 

In order to fit time series models, a 

stationary series is needed. If a time series has 

stable variance and do not have trend and 

seasonality components, it will be stationary. 

Because of non-stationarity, we tried to 

transform the original dataset to a stationary 

time series. A Box-Cox power transformation 

(λ=-0.9) was used to the dataset to establish the 

stability of the variance of the time series. Also, 

to remove the seasonality component of period 

12, the difference operator of lag 12 (   , were 

defined by               ) was done. 

The ACF and PACF plots for the differenced 

series were obtained again to investigate the 

stationary (Fig. 4). The figure confirms that the 

ACF and PACF plots for the differenced and 

deseasonalized rainfall data were nearly stable. 

To choose the best model among the AR, MA, 

and ARMA models, the AICC and BIC were 

used. The results gained from time series 

models with minimum AICC and BIC in Shiraz 

synoptic station are shown in Table (1). 

According to the results in Table (1), and 

regarding to the principle of parsimony, by 

which the best model is the one which has 

fewest parameters among all models that fit the 

data, the ARMA (1,12) model which had the 

low AICC and BIC values and also is the one 

which has fewest parameters among all models 

that fit the data was considered as the best 

model for Shiraz synoptic station rainfall 

analysis. 

Then to make sure that ARMA (1,12) model 

is representative for the studied data and could 

be applied to predict the upcoming rainfall data, 

the goodness of fit was evaluated for this model 

using different indices. For this purpose, 

homogeneity, residuals randomness, model 

validation to forecast, and comparing ACF and 

PACF of original and fitted data were 

investigated. 

The result of the Ljung-Box statistic test 

(p˃0.05) implies the randomness and 

homogeneity of residuals. According to Fig. 

(5), the maximum 5% of the amount of ACF / 
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PACF remaining outside the scope of zero 

(dotted lines) which indicates the suitability of 

the selected model. 

 
Fig. 4. ACF (left) and PACF (right) plots after transformation and differencing 

 

Table 1. Time series models with minimum AICC and BIC 
Model Method Order Equation AICC BIC 

AR 

Y-W 25 
X(t) = 0.1670 X(t-1) - 0.6626 X(t-12) + 0.1244 X(t-13) - 

0.4214 X(t-24) + 0.09345 X(t-25) + Z(t) 
-2062.33 -2056.63 

Burg 25 
X(t) = 0.1675 X(t-1) - 0.6623 X(t-12) + 0.1251 X(t-13) - 

0.4212 X(t-24) + 0.09395 X(t-25) + Z(t) 
-2062.33E -2056.62 

MA 
H-R 12 X(t) = Z(t) + 0.1332 Z(t-1) - 0.9612 Z(t-12) -2095.16 -2231.32 

I 12 X(t) = Z(t) + 0.1332 Z(t-1) - 0.9613 Z(t-12) -2095.16 -2231.36 

 H-R (1,1) X(t) = 0.1515 X(t-1) + Z(t) - 0.004359 Z(t-1) -1846.87 -1849.47 

 I (1,1) X(t) = 0.006144 X(t-1) + Z(t) + 0.1472 Z(t-1) -1847.26 -1849.47 

 H-R (1,12) X(t) = 0.1681 X(t-1) + Z(t) - 1.000 Z(t-12) -2102.40 -2253.15 

 H-R (1,13) X(t) = Z(t) – 1.000 Z(t-12) -2089.44 -2244.28 

 H-R (1,24) 
X(t)=0.1774 X(t-1)+Z(t)- 0.07345 Z(t-6)- 1.180 Z(t-12)+ 

0.1176 Z(t-24) 
-2144.40 -2266.30 

ARMA H-R (1,25) 
X(t)= 0.1729 X(t-1)+ Z(t) + 0.07487 Z(t-6)- 0.9936 Z(t-

12)+ 0.03467 Z(t-20) + 0.03402 Z(t-24) 
-2144.71 -2177.96 

 H-R (2,1) X(t) = 0.1503 X(t-1)  +Z(t) -1848.91 -1849.47 

 I (2,1) 
X(t) = - 0.4203 X(t-1) + 0.06454 X(t-2)   + Z(t)+0.5736 Z(t-

1) 
-1845.73 -1849.47 

 H-R (2,12) X(t) = Z(t)  – 1.000 Z(t-12) -2089.44 -2244.28 

 H-R (2,13) X(t)= Z(t) – 1.000 Z(t-12) -2089.44 -2244.28 

 H-R (2,24) 
X(t) = 0.1772 X(t-1)   + Z(t) - 0.07237 Z(t-6) – 1.182 Z(t-12) 

+ 0.1184 Z(t-24) 
-2144.40 -2266.99 

 H-R (2,25) 
X(t) = 0.1779 X(t-1)  +Z(t)  - 1.144 Z(t-12) +0.1441 Z(t-

24) 
-2139.30 -2244.11 

Y-W: Yule-Walker; H-R: Hannan-Rissanen; I: Innovations 
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Fig. 5. (a): Autocorrelation (ACF) (b): Partial Autocorrelation (PACF) for residual errors resulted from ARMA 

(1,12) model 

 

Also, the ACF / PACF plots of original and 

fitted data are very close together, which 

confirms the goodness of fit (Fig. 6). 

These conclude that ARMA (1,12) model is 

proper to demonstrate the studied data and 

could be applied to predict the upcoming 

rainfall data. 
 

 

Fig. 6. Comparison of autocorrelation (ACF) and partial autocorrelation (PACF) 

 plots of data sets and ARMA (1, 12) model 
 

So, the ARMA (1,12) model was tested for 

its validity. The fitted model was applied to 

predict the last 60 observations (March 2011 to 

February 2016) based on the previous 480 

observations (March 1971 to February 2011). 

The results obtained using the fitted model are 

shown in Fig. (7-8). 
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Fig. 7. Forecasting of transformed rainfall using ARMA (1, 12) model 

 

Coefficient of determination value of 99.86 

percent (R
2
 = 0.9986) and positive correlation 

(P˂0.05) between the original data and 

predicted values indicate the appropriateness of 

the model to forecast (Fig. 8). 

From the results presented in this study, it is 

apparent that the chosen model should be 

sufficiently accurate to forecast rainfall in this 

region. 

 

 

Fig. 8. Comparison of original data and predicted values by ARMA (1,12) model 
 

Finally, based on the ARMA (1,12) model, 

the values for the next 60 months (March 2016 

to February 2021) were forecasted. The 

obtained results in Fig. (9) and Table (2) show 

that the seasonal drought seasons in 50% of the 

predicted normal conditions, 29 percent 

moderate and 21 percent seasons wet weather 

conditions will be mild drought conditions. 
 



37                                                                                            M. Bahrami et al./Water Harvesting Research, 2018, 3(1):29-39 

 

 
 

 
Fig. 9. Forecasting transformed monthly rainfall in Shiraz synoptic station from March 2016 to February 2021 

 

Table 2. The predicted monthly rainfall using the ARMA (1,12) in 2016-2021 

Month and 

Year 

Prediction 

(mm) 

Month and 

Year 

Prediction 

(mm) 

Month and 

Year 

Prediction 

(mm) 

Month and 

Year 

Prediction 

(mm) 

Mar 2016 7.6 Jun 2017 0.2 Sep 2018 1.3 Dec 2019 7.9 

Apr 2016 4.7 Jul 2017 0.6 Oct 2018 31.8 Jan 2020 10.0 

May 2016 -0.1 Aug 2017 -0.1 Nov 2018 6.2 Feb 2020 7.1 

Jun 2016 0.3 Sep 2017 1.4 Dec 2018 8.1 Mar 2020 9.3 

Jul 2016 0.7 Oct 2017 32.8 Jan 2019 10.3 Apr 2020 4.5 

Aug 2016 -0.1 Nov 2017 6.4 Feb 2019 7.3 May 2020 -0.3 

Sep 2016 1.5 Dec 2017 8.3 Mar 2019 9.5 Jun 2020 0.0 

Oct 2016 33.8 Jan 2018 10.5 Apr 2019 4.6 Jul 2020 0.4 

Nov 2016 6.5 Feb 2018 7.5 May 2019 -0.3 Aug 2020 -0.3 

Dec 2016 8.4 Mar 2018 9.7 Jun 2019 0.1 Sep 2020 1.2 

Jan 2017 10.7 Apr 2018 4.7 Jul 2019 0.5 Oct 2020 30.1 

Feb 2017 7.7 May 2018 -0.2 Aug 2019 -0.3 Nov 2020 5.9 

Mar 2017 9.9 Jun 2018 0.1 Sep 2019 1.3 Dec 2020 7.7 

Apr 2017 4.9 Jul 2018 0.5 Oct 2019 31.0 Jan 2021 9.8 

May 2017 -0.2 Aug 2018 -0.2 Nov 2019 6.1 Feb 2021 7.0 

 

4. Conclusion 

A method of forecasting the future monthly 

rainfall by applying time series modeling 

method was presented in this research. A 

dataset occurred from 1971 to 2016 were used 

for time series analysis. Model validation 

results based on 60 months obtained for the 

years 2011-2016 were successful for the 

proposed method. Then, the forecasting results 

for the upcoming 60 months during the years 

2017 to 2021 were considered to be excellent 

and accurate. Therefore, we conclude that the 

ARMA (1,12) model is the best-fitted model 

overall. This will certainly assist policy makers 

and decision makers to establish strategies, 

priorities and proper use of water resources in 

Shiraz. 
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