Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Bahrami, M., Bazrkar, S., & Zarei, A. R. (2018). Modeling, prediction and trend assessment of drought.
Water and Climate Change. http://dx.doi.org/10.2166/wcc.2018.174.
Bahrami, M., Tavakol Sadrabadi, M., & Zarei, A. R. (2014). Analysis of Intensity- Duration and Frequency of Drought and Trend of Precipitation Changes in the Shiraz Synoptic Station (Iran). Journal of Irrigation and Water Engineering, 6(21), 59-74.
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: forecasting and control. Upper Saddle River, NJ.
Bras, R. L., & Rodriguez-Iturbe, I. (1985). Random functions and hydrology. Addison-Wesley, Reading, MA.
Brockwell, P. J., & Davis, R.A. (2010). Introduction to time series and forecasting. Springer, New York.
Dastorani, M.,
Mirzavand, M.,
Dastorani, M. T.,
& Sadatinejad, S. J. (2016). A comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition.
Journal of Nat Hazards, DOI: 10.1007/s11069-016-2163-x
Davidson, J. W., Savic, D. A., & Walters, G. A. (2003). Symbolic and numerical regression: experiments and applications. Journal of Information Science, 150(1–2), 95–117.
Dutta, D., Wendy, D., Welsh, J. V., Shaun, S. H. K., & Nicholls, D. (2012). A comparative evaluation of short-term stream flow forecasting using time series analysis and rainfall-runoff models in the water source. Water Resour Manage, 26, 4397–4415. doi:10.1007/s11269-012-0151-9
Feng, Q., Wen, X., & Li, J. (2015). Wavelet analysis-support vector machine coupled models for monthly rainfall forecasting in arid regions. Water Resour Manage, 29(4), 1049–1065.
Galeati, G. (1990). A comparison of parametric and non-parametric methods for runoff forecasting. Journal of Hydrological Sciences, 35(1–2), 79–94.
Gorman, J. W., & Toman, R. J. (1966). Selection of variables for the fitting equation to data. Technometrics, 8(1), 27–51.
Hooshmand, A. R., Salarijazi, M., Bahrami, M., Zahiri, J., & Soleimani, S. (2013)
Assessment of pan evaporation changes in South-Western Iran.
African Journal of Agricultural Research,
8(16), 1449-1456.
Hsu, K., Gupta, H. V., & Sorooshian, S. (1995). Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31(10), 2517–2530.
Lall, U., & Bosworth, K. (1993). Multivariate kernel estimation of functions of space and time hydrologic data. In: Hipel KW (ed.). Stochastic and Statistical Methods in Hydrology and Environmental Engineering. Springer Velag, Kluwer, NewYork.
Lin, G. F., & Lee, F. C. (1992). An aggregation-disaggregation approach for hydrologic time series modeling. Journal of Hydrology, 138(3–4), 543–557. doi:10.1016/0022-1694(92)90136-J
Mahsin, M., Akhter, Y., & Begum, M. (2012). Modeling rainfall in Dhaka Division of Bangladesh using time series analysis. Journal of Mathematical Modelling and Application, 1(5), 67–73.
Mair, A., & Fares, A. (2011). Time series analysis of daily rainfall and streamflow in a volcanic dike-intruded aquifer system, O‘ahu, Hawai‘i, USA. Hydrogeol J, 19, 929–944. doi:10.1007/s10040-011-0740-3
Meher, J., & Jha, R. (2013). Time-series analysis of monthly rainfall data for the Mahanadi River Basin, India. Sciences in Cold and Arid Regions, 5(1), 0073-0084.
Mirzavand, M., & Ghazavi, R. (2015). A stochastic modeling technique for groundwater level forecasting in an arid environment using time series methods. Water Resour Manage. doi:10.1007/s11269-014-0875-9
Mondal, M. S., & Wasimi, S. A. (2007, March). Choice of model type in stochastic river hydrology. In: Proceedings of the 1st international conference on water and flood management (ICWFM), Dhaka, Bangladesh.
Radhakrishnan, P., & Dinesh, S. (2006). An alternative approach to characterize time series data: a case study on Malaysian rainfall data. Chaos Solitons Fractals, 27, 511–518. doi:10.1016/j.chaos.2005.04.030
Sadeghian, M. S., Salarijazi, M., Ahmadianfar, I., & Heydari, M. (2016). Stage-discharge relationship in tidal rivers for tidal flood condition. Fresenius Environmental Bulletin, 25(10), 4111-4117.
Salari, A., Tavakol Sadrabadi, M., Zarei, A. R., & Bahrami, M. (2015). Evaluation of climate indices and the general trend of climate changes (Case study: Shiraz synoptic station). Journal of Irrigation and Water Engineering. 6(22), 138-150.
Salas, J. D., Deulleur, J. W., Yevjevich, V., & Lane, W. L. (1980). Applied Modeling of Hydrologic Time Series. Water Resources Publications, Littleton, CO.
Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6(2), 461-464.
Shirmohammadi, B., Vafakhah, M., Moosavi, V., & Moghaddamnia, A. (2013). Application of several data-driven techniques for predicting groundwater level. Water Resour Manag, 27, 419–432. doi:10.1007/s11269012-0194-y
Soltani, S., Modarres, R., & Eslamian, S. S. (2007). The use of time series modeling for the determination of rainfall climates of Iran. Int J Climatol, 27, 819–829. doi:10.1002/joc.1427
Weesakul, U., & Lowanichchai, S. (2005). Rainfall forecast for agricultural water allocation planning in Thailand. Thammasat International Journal of Science and Technology, 10(3), 18–27.
Willems, P. (2009). A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ Model Softw, 24, 311–321. doi:10.1016/j.envsoft.2008.09.005.