Document Type : Research Paper

Authors

1 Department of Water Resources Research, Water Research Institute, 1658954381 Tehran, Iran

2 Department of Irrigation and Drainage Engineering, University of Tehran, Iran

3 Water Resources Management Company, Tehran, Iran

Abstract

Groundwater vulnerability assessment is of crucial importance for land use/cover management. Some methods have been proposed specifically for the karst hydrogeological settings. Among them, COP and PaPRIKa, as two commonly applied recent methods, were adopted for the resource vulnerability assessment of a humid temperate karst region, north of Iran. Comparison of water bacterial content and distribution of vulnerability classes within the catchments for nine springs suggests that PaPRIKa got some higher level of validity, showing more consistency to the catchment properties. Vulnerability class of "very low" was absent in the PaPRIKa map, while the "low", "moderate", "high", and "very high" classes comprised 31.7, 48.7, 12.4, and 7.2 percent of the total region, respectively. Distribution of vulnerability classes within the spring catchments was also surveyed. Importantly, the catchment area of the largest spring, namely Sefidab, which has been supplying drinking water for almost one hundred thousand people in Amlash and Roudsar cities, was predominantly located in the "very high" vulnerability class, enclosing 368 sinkholes. Presence of Escherichia Coli in water emerging from all springs stressed the importance of enforcing strict regulations on the land use planning and conducting required treatments for drinking water supply. Moreover, since infiltration from precipitation and direct-runoff is substantial in the "high", and "very high" vulnerability zones, rainwater and floodwater harvesting may face serious technical challenges there. Hence, intrinsic vulnerability assessment in a karst region can be deserved as a basic criterion for the design of water harvesting systems.

Keywords

Alavi, M. (1996). Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics, 21(1):1-33.
Albinet, M., & Margat, J. (1970). Cartographie de la vulnerabilite a la pollution des nappes d’eau souterraine. Bull. BRGM 2ème série, 3(4):13-22.
Aller, L. (1985). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
Andreo, B., Ravbar, N., & Vías, J. M. (2009). Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeology Journal, 17(3):749-758.
Annells, R. N., Arthurton, R. S., Bazley, R. A., & Davies, R. G. (1975). Explanatory text of the Qazvin and Rasht quadrangles map 1:250000. Geological Society of Iran, E3 and E4, 94 p.
Chachadi, A. G., & Lobo-Ferreira, J. P. (2001). Seawater intrusion vulnerability mapping of aquifers using GALDIT method. Coastin—A Coastal Policy Res News, 4:7-9.
Daly, D., Dassargues, A., Drew, D., Dunne, S., Goldscheider, N., Neale, S., Popescu, I., & Zwahlen, F. (2002). Main concepts of the" European approach" to karst-groundwater-vulnerability assessment and mapping. Hydrogeology Journal, 10(2):340-345.
Davis, A. D., Long, A. J., & Wireman, M. (2002). KARSTIC: A sensitivity method for carbonate aquifers in karst terrain. Environmental Geology, 42:65–72.
Dörfliger, N., & Plagnes, V. (2009). Cartographie de la vulnérabilité des aquifères karstiques guide méthodologique de la méthode PaPRIKa [Mapping the vulnerability of karst aquifers. Guidelines of the method PAPRIKa]. Rapport BRGM RP-57527-FR, BRGM, Orleans, France, 100 pp.
Dörfliger, N., & Zwahlen, F. (1995). EPIK: a new method for outlining of protected areas in a karst environment. In: Günay, G., & Johnson, I. (eds.) Proceedings 5th International symposium and field seminar on karst waters and environmental impacts, Antalya, Sep 1995, Balkema, Rotterdam, p 117–123.
Ghalamghash, J., Rashid, H., & Mehrparto, M. (2003). Geological Map of Jirandeh (1:100000). Geological Survey of Iran, Tehran, Iran.
Goldscheider, N. (2002). Hydrogeology and vulnerability of karst systems – examples from the Northern Alps and Swabian Alb. Dissertation Universität Karlsruhe, Fakultät für Bio- und Geowissenschaften, Germany.
Goldscheider, N., Klute, M., Sturm, S., & Hötzl, H. (2000). The PI method: a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol., 463: 157–166.
Huneau, F., Jaunat, J., Kavouri, K., Plagnes, V., Rey, F., & Dörfliger, N. (2013). Intrinsic vulnerability mapping for small mountainous karst aquifers, implementation of the new PaPRIKa method to Western Pyrenees (France). Engineering Geology, 161:81–93.
Guo, Y., Zhai, Y., Wu, Q., Teng, Y., Jiang, G., Wang, J., Guo, F., Tang, Q., & Liu, S. (2016). Proposed APLIE method for groundwater vulnerability assessment in the karst-phreatic aquifer, Shandong Province, China: a case study. Environmental Earth Sciences, 75(2):1-14.
Iván, V., & Mádl-Szőnyi, J. (2017). State of the art of karst vulnerability assessment: overview, evaluation, and outlook. Environmental Earth Sciences76(3), 112.
Jeannin, P. Y., Cornaton, F., Zwahlen, F., & Perrochet, P. (2001). VULK: a tool for intrinsic vulnerability assessment and validation. Sciences et techniques de l'environnement, Mémoire hors-série, 185-190.
Jiménez-Madrid, A., Carrasco, F., Martínez, C., & Gogu, R. C. (2013). DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Quarterly Journal of Engineering Geology and Hydrogeology, 46(2):245-255.
Kardan Moghaddam, H., Jafari, F., & Javadi, S. (2017). Evaluation vulnerability of coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrological Sciences Journal, 62(1):137-146.
Kavouri, K. P., Plagnes, V., Tremoulet, J., Dörfliger, N., Rejiba, F., & Marchet, P. (2011). PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeology Journal, 19(2):339-353.
Kavouri, K. P., Karatzas, G. P., & Plagnes, V. (2017). A coupled groundwater-flow-modeling and vulnerability-mapping methodology for karstic terrain management. Hydrogeology Journal, DOI: 10.1007/s10040-017-1548-6.
Kavousi, A., & Raeisi, E. (2016). A new method to estimate annual and event-based recharge coefficient in karst aquifers; case study: Sheshpeer karst aquifer, south-central Iran. Journal of Cave and Karst Studies, DOI: 10.4311/2015ES0139.
Koutsi, R., & Stournaras, G. (2011). Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: the PRESK method. In: Lambrakis, N., Stournaras, G., & Katsanou, K., (eds.) Advances in the Research of Aquatic Environment. Springer, Berlin, Heidelberg. p 335-342.
Laimer, H. J. (2005). Die Erfassung der Karstgrundwasser-Vulnerabilität mit der Methode “VURAAS”, Grundwasser, 10(3):167-176.
Malik, P., & Svasta, J. (1999). REKS—An alternative method of karst groundwater vulnerability estimation, Hydrogeology, and land use management. Proceedings of the XXIX Congress of the International Association of Hydrogeologists, Bratislava, 79–85.
Mangin, A. (1975). Contribution à l’étude hydrodynamique des aquifères karstiques. Thesis, Université de Dijon, 422 pp.
Marín, A. I., & Andreo, B. (2015). Vulnerability to Contamination of Karst Aquifers. In: Stevanovic, Z. (eds.) Karst Aquifers—Characterization and Engineering. Springer. p 251-266.
Marín, A. I., Dörfliger, N., & Andreo, B. (2012). Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environmental Earth Sciences, 65(8):2407-2421.
Marquı́nez, J., Lastra, J., Garcı́a, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270(1):1–11. DOI: 10.1016/S0022-1694(02)00110-5.
Moreno-Gómez, M., Pacheco, J., Liedl, R., & Stefan, C. (2018). Evaluating the applicability of European karst vulnerability assessment methods to the Yucatan karst, Mexico. Environmental Earth Sciences77(19), 682.
Naoum, S., & Tsanis, I. K. (2004). Orographic precipitation modeling with multiple linear regression. Journal of Hydrologic Engineering, 9:79–102. DOI: 10.1061/(ASCE)1084-0699(2004)9:2(79).
Pételet-Giraud E, Dörfliger N, Crochet P (2000) RISKE: Méthode d’évaluation multicritère de la vulnérabilité des aquifères karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéologie. 4:71-88.
Plagnes, V., Théry, S., Fontaine, L., Bakalowicz, M., & Dörfliger, N. (2005). Karst vulnerability mapping: improvement of the RISKE method. KARST 2005, Water Resources and Environmental Problems in Karst, Belgrade-Kotor, Serbia.
Ravbar, N., & Goldscheider, N. (2007). The proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta carsologica, 36(6):397-411.
Ravbar, N., & Goldscheider, N. (2009). Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeology Journal, 17(3):725-733
Ray, J. A., & O’dell, P. W. (1993). DIVERSITY: a new method for evaluating the sensitivity of groundwater to contamination. Environmental Geology, 22(4):345-352.
Sendlein, L. V. A. (1992). Analysis of DRASTIC and wellhead protection methods applied to karst terrain, In Quinlan, J. (ed.) Proceedings of the Third Conference on Hydrology, Ecology, Monitoring, and Management of Groundwater in Karst Terrains. National Groundwater Association. p 669-685.
Stöcklin, J. (1974). Northern Iran: Alborz Mountains. Geological Society London, Special Publications, 4(1):213-234.
Stöcklin, J., & Setudehnia, A. (1971). Stratigraphic lexicon of Iran: Part 1, Central, North, and East Iran. Geology Survey of Iran, report 18, 370 p.
Um, M. J., Yun, H., Cho, W., & Heo, J.H. (2010). Analysis of orographic precipitation on Jeju-island using regional frequency analysis and regression. Water resources management, 24(7): 1461-1487. DOI: 10.1007/s11269-009-9509-z.
Vías, J. M., Andreo, B., Perles, M.J., Carrasco, F., Vadillo, I., & Jiménez, P. (2006). The proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeology Journal, 14(6):912-925.
Vías, J., Andreo, B., Ravbar, N., & Hötzl, H. (2010). Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. Journal of environmental management, 91(7), 1500-1510.
Wachniew, P., Zurek, A. J., Stumpp, C., Gemitzi, A., Gargini, A., Filippini, M., Rozanski, K., Meeks, J., Kværner, J., & Witczak, S. (2016). Towards Operational Methods for the Assessment of Intrinsic Groundwater Vulnerability: A review. Critical Reviews in Environmental Science and Technology. 46(9):827-884. DOI: 10.1080/10643389.2016.1160816.
Water Research Institute. (2016). Investigation of Dorfak karst region, Bijar Watershed, North of Iran: Final report, Guilan Regional Water Authority Company, Rasht, Iran.
Zwahlen, F. (2004). Cost Action 620. Vulnerability and Risk Mapping for the Protection of Carbonate (Karstic) Aquifers: Final report. Office for Official Publications of the European Communities.