Abbaspour, K. C. (2011). User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland.
Akhavan, S., Abedi-Koupai, J., Mousavi, SF., Afyuni, M., Eslamian, S.S., & Abbaspour, K.C. (2010) Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture, Ecosystems and Environment, 139: 675–688.
Arabi, M., Govindaraju, R. S., & Hantush, M. M. (2006). Cost‐effective allocation of watershed management practices using a genetic algorithm. Water Resources Research, 42(10).
Faculty of Agriculture, University of Tehran (FAUT), (1993), General Investigation of Taleghan Basin: Hydrometeology and Climatology Report. (In Persian).
Giri, S., Nejadhashemi, A. P., & Woznicki, S. A. (2012). Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. Journal of environmental management, 103, 24-40.
Giri, S., Nejadhashemi, A. P., Woznicki, S., & Zhang, Z. (2014). Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrological Processes, 28(3), 431-445.
Hosseini, M., Ghafouri, A. M., M Amin, M. S., Tabatabaei, M. R., Goodarzi, M., & Abde Kolahchi, A. (2012). Effects of land use changes on water balance in Taleghan Catchment, Iran. Journal of Agricultural Science and Technology, 14(5), 1161-1174.
Jha, M. K., Schilling, K. E., Gassman, P. W., & Wolter, C. F. (2010). Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. Journal of Soil and Water Conservation, 65(6), 342-352.
Kaini, P., Artita, K., & Nicklow, J. W. (2012). Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals. Water resources management, 26(7), 1827-1845.
Karamouz, M., Taheriyoun, M., Baghvand, A., Tavakolifar, H., & Emami, F. (2010). Optimization of watershed control strategies for reservoir eutrophication management. Journal of Irrigation and Drainage Engineering, 136(12), 847-861.
Kumar, S., & Mishra, A. (2015). Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin. Water Resources Management, 29(6), 1749-1765.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Asabe, 50(3), 885-900.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., King, K.W., Williams, J.R. 2011. Soil and waterassessment tool (SWAT) theoretical documentation, Blackland Research Center, TexasAgricultural Experiment Station, Temple, Texas (BRC Report 02-05).
Niraula, R., Kalin, L., Srivastava, P., & Anderson, C. J. (2013). Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling, 268, 123-133.
Noor, H., Fazli, S., & Alibakhshi, S. M. (2013). Evaluation of the relationships between runoff-rainfall-sediment related nutrient loss (a case study: Kojour Watershed, Iran). Soil Water Res, 8(4), 172-177.
Noor, H., Vafakhah, M., Taheriyoun, M., & Moghaddasi, M. (2014). Comparison of Single-site and Multi-site Based Calibrations of SWAT in Taleghan Watershed, Iran. International Journal of Engineering-Transactions B: Applications, 27(11), 1645.
Nosrati, K., Feiznia, S., Van Den Eeckhaut, M., & Duiker, S. W. (2011). Assessment of soil erodibility in Taleghan Drainage Basin, Iran, using multivariate statistics. Physical Geography, 32(1), 78-96.
Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2012). Decision support for diffuse pollution management. Environmental Modelling & Software, 30, 57-70.
Panagopoulos, Y., Makropoulos, C., Baltas, E., & Mimikou, M. (2011). SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecological modelling, 222(19), 3500-3512.
Saghafian, B., & Khosroshahi, M. (2005). Unit response approach for priority determination of flood source areas. Journal of hydrologic engineering, 10(4), 270-277.
Saghafian, B., Meghdadi, A. R., & Sima, S. (2015). Application of the WEPP model to determine sources of run‐off and sediment in a forested watershed. Hydrological Processes, 29(4), 481-497.
Sardar, B., Singh, A. K., Raghuwanshi, N. S., & Chatterjee, C. (2012). Hydrological Modeling to Identify and Manage Critical Erosion-Prone Areas for Improving Reservoir Life: Case Study of Barakar Basin. Journal of Hydrologic Engineering, 19(1), 196-204.
Schilling, K. E., & Wolter, C. F. (2009). Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT. Environmental management, 44(4), 671-682.
Seppelt, R., Lautenbach, S., & Volk, M. (2013). Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Current Opinion in Environmental Sustainability, 5(5), 458-463.
Skardi, M. J. E., Afshar, A., & Solis, S. S. (2013). Simulation-optimization model for non-point source pollution management in watersheds: Application of cooperative game theory. KSCE Journal of Civil Engineering, 17(6), 1232-1240.
Srinivasan, M.S., Gerard-Marchant, P., Veith, T.L., Gburek, W.J., Steenhuis, T.S., 2005. Watershed scale modeling of critical source areas of runoff generation and phosphorus transport. Journal of the American Water Resources Association, 41, 361-377.
Strauss, P., Leone, A., Ripa, M. N., Turpin, N., Lescot, J. M., & Laplana, R. (2007). Using critical source areas for targeting cost‐effective best management practices to mitigate phosphorus and sediment transfer at the watershed scale. Soil Use and Management, 23(s1), 144-153.
Tripathi, M. P., Panda, R. K., & Raghuwanshi, N. S. (2005). Development of effective management plan for critical subwatersheds using SWAT model. Hydrological Processes, 19(3), 809-826.
Tuppad, P., Douglas-Mankin, K. R., & McVay, K. A. (2010). Strategic targeting of cropland management using watershed modeling. Agricultural Engineering International: CIGR Journal, 12(3-4), 12-24.
White, M. J., Storm, D. E., Busteed, P. R., Stoodley, S. H., & Phillips, S. J. (2009). Evaluating nonpoint source critical source area contributions at the watershed scale. Journal of environmental quality, 38(4), 1654-1663.
Winchell, M., Meals, D. W., Folle, S., Moore, J., Braun, D., DeLeo, C., Budreski, K., & Schiff R. (2011). Identification of Critical Source Areas of Phosphorus within the Vermont Sector of the Missisquoi Bay Basin. Final Report to the Lake Champlain Basin Program. Montpelier, VT: Stone Environmental, Inc. Online:
http://www.lcbp.org/ ijc.htm
Yazdi, J., Salehi Neyshabouri, S. A. A., Niksokhan, M. H., Sheshangosht, S., & Elmi, M. (2013). Optimal prioritisation of watershed management measures for flood risk mitigation on a watershed scale. Journal of Flood Risk Management, 6(4), 372-384.