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Abstract 

Snow cover holds significant importance in hydrology as it plays a vital role in the water cycle 

and water resource management. Acting as a natural reservoir, snow stores water during winter and 

gradually releases it as it melts. This process contributes to streamflow, groundwater recharge, and 

overall water availability. Main goal of this study is the modeling and prediction of the changes in 

snow cover extent in Baranduz River basin, in Iran. Accurate modeling of snow cover area is crucial 

in hydrology as it enables precise predictions and assessments of water resources. These models 

incorporate snow accumulation, melt rates, and distribution, allowing informed decision-making for 

water management, agriculture, and ecosystem preservation. Therefore, the snow cover extent of the 

basin was extracted from MODIS 8-day maximum snow extent production from 2000 to 2019. Forty 

meteorological parameters, 20 satellite based and 20 surface stationary collected data, were used as 

the independent variables. The PCA was performed to parameters, and the PCA6 vector was used as 

input to the machine learning models. ANN, SVM, CART, and RF machine learning approaches were 

performed in this study. The results showed, all machine learning models had satisfactory 

performance and efficiency in modeling and predicting the snow cover extent. The PCA-RF model 

showed the highest accuracy. The RMSE and R2 values for the PCA-RF model were 0.345 and 0.895, 

respectively, in the testing phase. Despite the fact that models have not been able to predict some of 

the boundary points accurately, they have still demonstrated acceptable performance.  

Keywords: ANN, Baranduz River, CART, PCA, RF, Snow Cover Extent, SVM. 
 

1. Introduction 

Snow cover has a pivotal role in the 

hydrological processes of a river basin, making 

it essential for water resource management and 

climate studies. The depth and extent of snow 

cover directly influence hydrological 

processes, such as water availability, 

streamflow generation, and water storage. 

Acting as a natural reservoir, snow 

accumulates water during winter and gradually 

releases it during the melting season, ensuring 

a steady water supply throughout the year and 

generating streamflow (Karimi et al., 2016). 

However, snow cover significantly impacts the 

earth’s energy balance due to its high albedo 

by reflecting a considerable amount of solar 

radiation. However, snow cover affects 

regional climate patterns, including 

temperature and precipitation distribution, 

which implicates the ecosystems and human 

activities (Li et al., 2021). Modeling snow 

cover in a river basin is important to studies 

and predictions of water availability, flood 

risks, climate change impacts. By 

incorporating factors such as snow depth, 

density, and distribution, these models can 

simulate snowmelt processes, estimate the 

timing and amount of runoff, and provide 

valuable insights for water resource planning, 

reservoir operations, and flood control 

strategies (Boudhar et al., 2020). Additionally, 

modeling snow cover allows for the evaluation 

of changes in snow accumulation and melt 

patterns under multiple climate scenarios, that 
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helps the development of adaptation strategies 

to the climate change impacts (Cohen and 

Rind, 1991). 

Modelling and simulations, especially with 

machine learning and Artificial Intelligence 

approaches, are widely applicable in 

hydrologic studies. Artificial intelligence (AI) 

models have gained significant attention and 

proven themselves to be valuable in the 

hydrology. These models with the help of 

evolutionary algorithms, improve 

understanding of hydrological processes and 

enhance prediction accuracy. These models are 

used in hydrology to predict various 

parameters, such as flood and streamflow 

(Ahmed et al., 2021; Niu and Feng, 2021), 

droughts (Abbasi et al., 2019; Zhu et al., 2021), 

evapotranspiration (Abghari et al., 2012; 

Rezaverdinejad, 2016), precipitation (Khalili 

and Nazeri Tahroudi, 2016; Mehdizadeh et al., 

2017; Nakhaei et al., 2023), air temperature 

(Yakut and Süzülmüş, 2020), soil temperature 

(Behmanesh and Mehdizadeh, 2017), dew 

point temperature (Attar et al., 2018), sediment 

transportation (Gupta et al., 2021), 

groundwater quality and levels (Abou Zakhem 

et al., 2017; Sahu et al., 2020). Snow cover 

modeling plays an important role in 

understanding the dynamics of snow in various 

climates. In recent years, machine learning 

techniques have emerged as valuable tools for 

improving snow cover estimation and 

mapping. One innovative approach proposed 

by (Hou et al., 2021) combines machine 

learning techniques with the Common Land 

Models to enhance the estimation of snow 

depth and fractional snow cover. Their study 

focuses on the northern Xinjiang region in 

China and employs MODIS fractional snow 

cover data. Snow has various parameters and 

indices to measure and all of them are usable 

in different studies for different purposes. The 

AI models are widely used in almost all of 

these areas and studies. The machine learning 

techniques have been applied in studies to 

estimating and modeling, snow depth (Kazama 

et al., 2021), snow cover (Kuter et al., 2021; 

Liu et al., 2020), snow density (Lee and Park, 

2021), snow water equivalent (Kim et al., 

2021), snow run-off (Duan et al., 2020), snow 

evaporation (Lin et al., 2020; Milly and Dunne, 

2020) and the snow cover and storages relation 

(Bahrami et al., 2020a; Zhang et al., 2020). In 

conclusion, using machine learning 

techniques, especially in snow cover 

modeling, such as the integration of ML 

techniques into data mining schemes and the 

use of algorithms like ANN and SVR, holds 

promise for improving the performance of 

estimation. These approaches have 

demonstrated enhanced accuracy and 

consistency in snow studies. 

Estimating snow cover area in a watershed, 

requires on-site snow measurement and 

snowfall monitoring, which is a challenging 

task and is practically not carried out by any 

government or private organization in any 

country. Nowadays, with the advancement and 

availability of remote sensing technology, 

snow cover data has become accessible in 

great areas like watersheds and river basis. 

Therefore, this study is based on remote 

sensing data. In many studies, MODIS sensor 

data has been suggested for snow cover 

extraction because of its accuracy and 

availability (Saavedra et al., 2018; Wu et al., 

2021). A product of this sensor, using the 

Normalized Difference Snow Index (NDSI) 

algorithm, is the 8-day maximum snow extent 

data. This data essentially represents the 

maximum snow cover area over the past eight 

days (Riggs et al., 2015). The calculation 

details and the method for extracting snow 

cover area in the watershed will be fully 

described in the following section.  

Although snow cover data is available to 

researchers through remote sensing, extracting 

and using this data requires technical 

knowledge and significant amount of time for 

satellite image classification. Since snow cover 

and snow water equivalent are input 

parameters in many hydrological processes 

and models, modeling and predicting snow 

cover extent as a time series can eliminate the 

time and complexities of remote sensing 

approach. It can also make this data accessible 

to individuals who have no specialized 

knowledge of remote sensing or have limited 

technical expertise. One study that considered 

snow cover area in a watershed as a monthly 

time series is the (Karimi et al., 2016). In this 

study, the snow cover area of the Haraz River 

basin in Iran was extracted from MODIS and 

modeled as a monthly time series. Stochastic 

models from the ARIMA and ARCH families 

were utilized in this study and the RMSE and 
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AIC values 0.878 and 2246.125, respectively 

were calculated for models.  It appears that the 

performance of snow cover time series models 

can be significantly improved by utilizing 

machine learning algorithms. According to the 

background, despite the importance of the 

prediction of changes in snow cover area in the 

watersheds, very limited studies have been 

done in this field, also If the study and 

evaluation of snow cover changes would be 

carried out with respect to the spatial and 

temporal dimensions, it would be led to more 

accurate conclusions in hydrological studies. 

The mathematical modeling of the snow cover 

extent could help the hydrologists to skip the 

remote sensing steps and helps researchers, 

who have limited knowledge of RS and GIS. 

Therefore, the main purpose of this study is to 

fit or train machine learning models for 

estimating the monthly snow cover extent in 

Baranduz River basin, located in West 

Azerbaijan province at North West of Iran. The 

snow extent is extracted from MODIS 8-day 

maximum snow extent data from 2000 to 2019. 

The models are trained by 40 monthly 

climatology parameters including both satellite 

and surface stationary data.     

 

2. Materials and Methods 

2.1. Study Area 

The Baranduz River basin is located west of 

Lake Urmia in Iran. Its upstream originates 

near the borders of Turkey and Iran, and after 

flowing for a distance of 56 km, it merges with 

the Balanej River and finally after another 11 

km, flows into Lake Urmia. The total area of 

the Baranduz River basin measures 1151 km2, 

and has an average annual discharge of 165 

MCM. The average annual precipitation of this 

basin is 268.3 mm. The lowest elevation of the 

basin lies adjacent to Lake Urmia, starting at 

approximately 1272 meters and gradually 

rising to 3453 meters in the mountainous 

regions. Notably, this area is renowned for its 

apple farms that cultivate premium apple 

varieties. During the summer season, irrigation 

for the majority of these apple farms relies on 

the Baranduz River streamflow, with the 

river's discharge primarily dependent on snow 

presence and the extent of snow cover in the 

higher elevations of the region. Fig. 1 

illustrates the map of the study area, providing 

a comprehensive depiction of the Baranduz 

River basin and the geographic characteristics 

of the study area and surface data stations. 

 

 
Fig. 1. Baranduz River basin characteristics and hydro-climatology stations. 

 

2.2. Data and Preprocessing 

2.2.1. Climatology Data 

This research incorporates with four 

different datasets. Two of these datasets 

consist of observational data obtained from the 
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Bibakran and Babarud Hydro-climatology 

stations, whose geographic coordinates are 

illustrated in Fig. 1. Additionally, we utilized 

two datasets from the NASA (LaRC) Power 

Project, which utilizes the MERRA-2 model 

archive to generate meteorological data. These 

datasets encompass global coverage with a 

resolution of 0.05 decimal degrees. These data 

were obtained from the NASA Langley 

Research Center (LaRC) POWER Project 

funded through the NASA Earth 

Science/Applied Science Program. This data is 

available from (https://power.larc.nasa.gov). 

Table 1 provides an overview of the datasets 

employed in this study, including the specific 

parameters utilized from each dataset. The 

snow-covered modeling area within the basin 

was trained and tested using a collection of 40 

monthly observation parameters, from 

February 2000 to October 2019. 

 
Table 1. Meteorological parameters collected 

from Babarud and Bibakran ground 

hydrometeorological stations and satellite base 

data from the NASA LaRC project. 
Hydrometeorological 

stations Data 
MERRA-2 (LaRC) Data 

Parameters Unit Parameters Unit 

Evaporation mm 
Average 

temperature 
°C 

Precipitation mm 

Maximum 

average 

temperature 

°C 

Minimum 

temperature 
°C 

Minimum 

average 

temperature 

°C 

Minimum 

average 

temperature 

°C 
Sun 

insolation 
MJ/m2.day 

Average 

temperature 
°C 

Infrared 

insolation 
MJ/m2.day 

Maximum 

average 

temperature 

°C 
Relative 

humidity 
% 

Maximum 

temperature 
°C 

Dew point 

temperature 
°C 

Relative 

humidity 12:30 
% 

Wind speed 

in 2meter 
m/s 

Relative 

humidity 06:30 
% Precipitation Mm 

Relative 

humidity 18:30 
% 

Surface 

pressure 
kPa 

 

2.2.2. Snow Cover Data 

The snow cover area analysis in this study 

utilized from Moderate Resolution Imaging 

Spectroradiometer (MODIS) 8-day maximum 

snow extent data, as described by (Hall and 

Riggs, 2016). The MODIS data employed in 

this study utilizes the Normalized Difference 

Snow Index (NDSI) to determine the 

maximum snow extent over eight-day 

intervals. This approach effectively mitigates 

the impact of cloud cover, a significant 

challenge encountered in remotely sensed 

snow cover data (Hall et al., 2002). The 

specific MOD10A2 data series, accessible 

online through the international snow and ice 

center website, was used for this analysis. 

Various amounts of worldwide satellite snow 

cover data are accessible from the national 

snow and ice data center. These data are all 

available from (https://nsidc.org) website. For 

more information about the snow cover extent 

data which used in this research, you could also 

see: 

https://doi.org/10.5067/MODIS/MOD10A

2.006).  

ArcGIS software was employed to extract 

the snow cover area of the 8-day MODIS 

layers from February 2000 to October 2019, 

which were cropped to match the extent of the 

Baranduz River basin. At the end, from each 

month's layers within this timeframe, the 

monthly average snow cover extent was 

derived out. The main statistical information of 

the monthly snow cover extent in the Baranduz 

River basin is shown in Table 2. 

 
Table 2. Main statistical information of the 

monthly snow cover extent in Baranduz River 
basin 

Max Mean 
Standard 

Deviation 
Skew Kurtosis 

1229.18 312.83 372.23 0.95 2.42 

 

2.3. Box-Cox Transformation 

Box-Cox transformation, introduced by 

Box and Cox (Box and Cox, 1964), offers a 

powerful method to address anomalies such as 

non-additivity, non-normality, and 

heteroscedasticity. In data analysis, it is often 

assumed that the series or samples are 

normally distributed (Sakia, 1992). This 

technique employs a simple linear regression 

between all variables and the objective 

variable, using a maximum likelihood test to 

evaluate the fitness of the objective variable to 

a normal distribution curve.  

https://power.larc.nasa.gov/
https://doi.org/10.5067/MODIS/MOD10A2.006
https://doi.org/10.5067/MODIS/MOD10A2.006
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The transformation technique determines 

the optimal power to be applied to the 

objective series, aiming to align the sample 

data series with a normal distribution. 

Additional information and in-depth details 

can be found in the original paper (Box and 

Cox, 1964) and subsequent studies (Osborne, 

2010). To assess the fit of the sample data to a 

statistical distribution, the Q-Q plot is a 

valuable tool. The Q-Q plot, short for 

Quantile-Quantile plot, is a scatter plot that 

compares two sets of data: the theoretical 

distribution and the samples being tested. If the 

sample data and the distribution align 

perfectly, the Q-Q plot will show a straight 

line. Any deviations between the two sets of 

data indicate disparities between the samples 

and the theoretical distribution (Box and Cox, 

1964; Osborne, 2010). 

To avoid any unwanted effects of the high 

standard deviation of a parameter to the 

training phases, all parameters are centered to 

an average of zero and a standard deviation of 

1. The Box-Cox method is employed in this 

study to evaluate the normality of parameters 

and identify the optimal transformation for 

snow cover area, aiming to achieve a normal 

distribution and alleviate the influences of 

skewness. In order to randomize the data and 

reducing the unwanted errors of statistical 

distribution, all the parameters are 

standardized, and the monthly snow cover 

extent time series, transformed by the λ value 

of 0.275 using Eq. 1. 

𝑌𝑁 =
(𝑌λ − 1)

λ 
⁄  (1) 

In this equation, 𝑌𝑁 is the normalized series 

and 𝑌 is the original series (Osborne, 2010). 

 

2.4. Principal Component Analysis 

(PCA) 

Principal Component Analysis (PCA) is a 

widely used statistical technique that has found 

application in various fields, including 

hydrology. It was first introduced by Karl 

Pearson in 1901, making it over a century old 

(Pearson, 1901). PCA aims to simplify the 

analysis of complex datasets by transforming 

the original variables into a new set of 

uncorrelated variables called principal 

components. These principal components are 

linear combinations of the original variables 

and are ordered based on the amount of 

variation they capture in the data. By selecting 

a subset of the principal components, PCA 

allows for a reduction in the dimensionality of 

the dataset while retaining the most important 

information. 

In the field of hydrology, PCA has proven 

to be a valuable tool for analyzing and 

interpreting multivariable hydrological series. 

Hydrological processes involve numerous 

variables such as precipitation, streamflow, 

evapotranspiration, and water quality 

parameters, which are often correlated (Jehn et 

al., 2020). PCA helps in identifying the 

dominant patterns of variation in these 

variables and provides insights into the 

underlying processes. By extracting the 

principal components, hydrologists can reveal 

the common modes of variability and 

characterize the spatial and temporal patterns 

of hydrological phenomena. Especially in 

groundwater quality analysis, PC Analysis was 

used to cluster the observation wells and 

determine the most important pollutant in the 

studied groundwater aquifer (Bahrami et al., 

2020b). PCA has been applied in hydrological 

studies to investigate various aspects such as 

drought analysis, flood prediction, water 

quality assessment, and climate change 

impacts on hydrological processes (Abou 

Zakhem et al., 2017). 

In summary, Principal Component Analysis 

is a statistical technique that has been 

employed in hydrology for over a century. It 

works by transforming original variables into 

uncorrelated principal components, capturing 

the dominant patterns of variation in 

multivariable hydrological data. By reducing 

the dimensionality of the dataset, PCA aids in 

the interpretation and understanding of 

hydrological processes and has found 

applications in diverse areas within hydrology 

research (Song et al., 2010; Westra et al., 

2007). 

 

2.5. Artificial Neural Network (ANN) 

Artificial Neural Networks are popular 

methods in the field of artificial intelligence 

used for solving various problems such as 

regression, prediction, classification, and 

information retrieval (Yakut and Süzülmüş, 

2020). These networks are inspired by the 

neural cells of living organisms and consist of 
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multiple layers of neural cells that are 

interconnected and trained as a unit to provide 

results. In these networks, information is 

transmitted from the input layer to the hidden 

layers, where different features of the data are 

extracted and processed (Braspenning et al., 

1995). 

The layers of an artificial neural network 

are stacked one after another, and each layer 

passes the output information to the next layer. 

The first layer is typically the input layer, 

responsible for receiving the data and passing 

it to the next layer. The subsequent layers are 

the hidden layers, which process the 

information using weights or fixed values 

defined between the neurons and ultimately 

produce the output. The last layer is the final 

output of the neural network, adjusted based on 

the desired output and the number of output 

variables (Hassoun, 1995). 

To build an artificial neural network, the 

number of layers and the number of neurons in 

each layer need to be determined. Then, the 

inputs and desired outputs are defined, and the 

fixed values between the different layers are 

specified. After these steps, the network is 

trained to produce the desired output given the 

provided inputs. For this purpose, a set of data 

is fed into the network, and the weights 

between the layers are adjusted in a way that 

minimizes the error in the output 

(Yegnanarayana, 2009). Various algorithms 

are used to adjust the weights, and one of them 

is the Back-Propagation algorithm. This 

algorithm adjusts the weights of the fixed 

values between the layers based on the 

comparison between the original and 

generated data. This process continues until a 

convergence threshold is reached, and the 

algorithm stops (Riedmiller and Braun, 1993). 

The convergence threshold in this algorithm is 

the error between the observed data and the 

network's output, which in this study is set to 

0.05. Additionally, the present study's artificial 

neural network has three hidden layers with 7, 

5, and 3 neurons and an initial fixed value of 1 

for each intermediate layer. Fig. 2 illustrates 

the trained artificial neural network in the 

current study. The six blue neurons are the 

input neurons of the PCA6 vectors and the last 

neuron of the network is the output or the snow 

cover extent value.  

 

 
Fig. 2. Structure of the trained neural network model. Bias or constant weights are one. Three hidden (beige) 

layers with 7, 5 and 3 neurons. Six input neurons (blue) for PCA1 to PCA6. One output neuron (snow). 

 

At first, the network has been trained by 

training data, including 80% of the PCA6 

vectors and the snow cover time series, after 

the training, the test snow cover time series 

were calculated from the PCA6 test data, using 

the trained artificial neural network. All 

computational stages related to the ANN 

model in this study were conducted using the 

NeuralNet package in the R programming 

software. 
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2.6. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a 

supervised machine learning algorithm used 

for classification and regression analysis. The 

main idea behind SVM is to find a hyperplane 

or a higher-dimensional space that provides the 

best separation between different data points 

(Vapnik, 1998). This algorithm was initially 

introduced by Vapnik in 1963. In 1995, 

Vapnik and Cortes extended this method to 

solve multi-dimensional classification and 

regression problems. In this algorithm, after 

fitting the hyperplane, the model seeks to find 

a boundary that maximizes the margin between 

the two classes. This boundary is determined 

by the algorithm in a way that optimally 

maximizes the distance between the optimal 

margin and the same-class data points, while 

minimizing the distance between the optimal 

margin and the different-class data points 

(Cortes and Vapnik, 1995; Vapnik and Lerner, 

1963). 

The best differentiating hyperplane is the 

one with the maximum distance between the 

two classes, so it should assign the minimum 

value to itself. In non-linear classification tasks 

where the data points are not linearly 

separable, various mappings (kernel functions) 

have been defined in SVM. These mappings 

transfer the problem to a new space where the 

data points can be linearly separated. These 

kernel functions, also known as kernels, are 

convex functions that have a unique real 

solution under optimization conditions 

(Steinwart and Christmann, 2008). 

To understand the precise functioning of 

kernel functions, the equations, and the 

computation methods of Support Vector 

Machines in various regression and 

classification problems, references such as 

(Gunn, 1998), (Hearst et al., 1998) and 

(Steinwart and Christmann, 2008) can be 

consulted. Furthermore, the application and 

fitting of SVM on hydrological problems have 

been extensively described in studies such as 

(Niu and Feng, 2021), (Yakut and Süzülmüş, 

2020), and (Zhu et al., 2021). All 

computational stages related to the SVM 

model in this study were conducted using the 

E1071 package in the R programming 

software. 

 

2.7. Classification and Regression Tree 

(CART) 

The Classification and Regression Trees 

(CART) model is a powerful machine learning 

approach used for data classification and 

prediction. This model operates based on a 

hierarchical tree structure and was first 

introduced by (Breiman, 1984). At each node 

of the tree, the data is divided into two distinct 

groups based on specific features, and each 

group can be further subdivided into binary 

subsets (parent and child) based on other 

features. This process continues until the 

algorithm reaches a threshold regarding the 

number of tree branches or the observations 

present in each tree branch (Nakhaei et al., 

2023). As the trees grow larger, produce more 

branches and nodes, they incorporate more 

information into the model. 

After constructing a tree with a maximum 

size, tree pruning is performed using one of the 

pruning methods, starting from the leaves and 

moving towards the root (from child to parent). 

The goal of the CART model is not to create 

just one pruned tree; instead, it aims to 

generate a sequence of pruned trees, each of 

which represents candidate options for the 

final optimal tree (Wang et al., 2023). To 

identify a good tree, its performance is 

evaluated on independent test data. Finally, the 

constructed decision tree is validated and 

assessed on a separate set of test data (Sharma 

and Kumar, 2016). All computational stages 

related to the CART model in this study were 

conducted using the rpart package in the R 

programming software. 

 

2.8. Random Forrest (RF) 

The RF method is a machine learning 

technique developed based on the 

Classification and Regression Tree (CART) 

approach. CART was initially introduced by 

Breiman in 1984 as a solution for classification 

problems. In 2001, Breiman further extended 

this method to develop RF, which offers 

improved results in addressing regression 

problems and is currently regarded as one of 

the most powerful machine learning 

techniques (Breiman, 2001). 

In this methodology, a random set of 

decision trees is constructed based on the 

bootstrap method, each independently 

executed on the training data. Subsequently, 
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each tree within the ensemble independently 

fits a prediction model for the test data using 

the features extracted from the training data. 

These prediction models undergo evaluation 

using various metrics and are optimized based 

on input variables. Ultimately, the predictions 

from all trees are aggregated through 

averaging, forming the final prediction and 

serving as the system's output (Biau, 2012). 

The Random Forest (RF) method is recognized 

as a robust and widely employed technique in 

machine learning problems, typically applied 

to tasks involving large and diverse datasets. In 

such ensemble learning techniques, it is 

assumed that the collective accuracy of group 

training surpasses that of individual 

algorithmic models (Vapnik, 1998). 

To perform classification or regression 

using the Random Forest (RF) method, two 

parameters need to be provided by the user. 

One of these parameters is the size of the 

subsets or, in other words, the number of 

features for each tree (M), while the other 

parameter is the number of subsets or the 

number of trees (T). The values of M and T are 

chosen based on the machine or computer's 

hardware performance and memory. 

Typically, the value of M ranges from a few 

hundred to several thousand, and the value of 

T is suggested to be the square root of the 

number of variables. It is evident that as the 

values of M and T increase, the final ensemble 

model will be closer to reality, but the 

algorithm becomes larger, and its learning time 

increases (Biau and Scornet, 2016). In the 

present study, the value of M is set to 500, and 

the value of T is set to 3. All computational 

stages related to the RF model in this study 

were conducted using the Random Forrest 

package in the R programming software. 

 

2.9. Evaluation Indicators 

An evaluation of model performance entails 

the utilization of a set of dimensionless criteria 

applied to both actual observations and model-

derived data. The purpose of employing these 

criteria is to enable a comprehensive 

comparison between the models under study. 

Based on the conducted researches, it has been 

determined that the best criteria for comparing 

the models and choosing the best models are 

the root mean square error (RMSE) and the 

mean absolute error (MAE) for evaluating the 

model error, and the coefficient of 

determination (R2) and the correlation 

coefficient (R) between the observed and 

calculated data. The equations and calculation 

methods for each criterion are discussed 

below: 

RMSE = √
∑ (Yi − Xi)2N

i

N
 (2) 

MAE =
∑ |Yi − Xi|

N
i

N
 (3) 

R =
∑(Yi − Y̅) (Xi − X̅)

√∑(Yi − Y̅)2 ∑(Xi − X̅)2
 (4) 

R2 = 1 −  
∑(Yi − Xi)

2

∑(Yi − Y̅)2
 (5) 

In these equations, 𝑌𝑖 and 𝑋𝑖 are the 

observational series and calculated from the 

model, respectively. Also, 𝑌̅ and 𝑋̅ are the 

average of the series and N is the number of 

observations.  

Another evaluation criterion utilized in this 

study is the commonly used Akaike 

Information Criterion (AIC). The AIC is 

calculated for different models using Eq. 6. A 

smaller AIC value indicates a better fit 

between the observation values and the values 

calculated from the model. Therefore, any 

model with a lower AIC is selected as a more 

suitable model. 

AIC = N ∗  Ln (
𝑆𝑆𝐸

𝑁
) + 2𝐾 (6) 

In this equation, 𝑆𝑆𝐸 represents the sum of 

squared errors of the model, N denotes the 

number of observations, and K is the number 

of variables used in the model plus one 

(Akaike, 1974). 

 

3. Results and Discussion 

As mentioned in previous sections, in this 

study, monthly time series of snow cover area 

in the Baranduz River basin in Iran were 

extracted from 8-day MODIS data and 

modeled using 40 meteorological parameters. 

The data were first standardized and 

normalized, and then dimension reduction 

applied using Principal Component Analysis 

(PCA). Since the meteorological data in this 

study, exhibited high intercorrelations, which 

is one of the characteristics of hydrological 

data, dimension reduction methods needed to 

be employed in order to prevent computational 

complexity and avoid collinearity issues in the 
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models. In this study, PCA was utilized as the 

dimension reduction method and 80% of data 

are used for training models and the 20% of 

data are used for testing the trained models. All 

of the results of PCA and subsequent modeling 

are described in the following section.  

 

3.1. PCA Analysis 

In this method, new orthogonal vectors are 

generated using the study data, each capturing 

a portion of the total variance of the variables. 

Fig. 3 illustrates the percentage of variance 

coverage by each PCA vector in this study. To 

involve a higher percentage of variance in the 

model, a greater number of PCA vectors 

should be used for modeling. 

 

 
Fig. 3. Percentage of variance covered by PCA 

orthogonal vectors. 

 

As shown in Fig. 3, the firs vector covers 

almost 75% of the variance and more than 96% 

of the variance is covered by 6 PCA vectors. 

This highlights the significant dimensionality 

reduction achieved by the PCA method and 

emphasizes its effectiveness in capturing the 

essential information from the original dataset. 

From PCA 7 to PCA 40, the coverage 

percentage of variance is rising too slowly and 

covers approximately 4% or 5%, therefor these 

PCA vectors are excluded from consideration. 

Consequently, by employing the PCA 

dimensionality reduction method, the number 

of independent variables, originally 40, has 

been reduced to 6. These 6 variables cover 

approximately 96% of the variance, which 

makes them suitable inputs for machine 

learning models. 

 

3.2. Modeling Results 

The 6 PCA vectors described in the 

previous section have been utilized as inputs 

for machine learning models. In the following 

section, the results, performance and 

efficiency of the ANN, SVM, CART, and RF 

models are presented, discussed and examined. 

Also, following the model fitting process, 

evaluation indices have been calculated for all 

models during the training and testing phases. 

The values of these comparative indices are 

presented in Table 3 calculated from all fitted 

models. 

 
Table 3. Performance and Error evaluation of the models during both training and testing phases. 

Model Phase RMSE MAE R2 R AIC 

PCA- ANN 
Train 0.122 0.088 0.984 0.992 -794.9 

Test 0.381 0.318 0.873 0.934 -71.02 

PCA- SVM 
Train 0.195 0.143 0.963 0.981 -616.6 

Test 0.351 0.263 0.886 0.941 -77.85 

PCA- CART 
Train 0.319 0.245 0.898 0.947 -428.6 

Test 0.352 0.288 0.882 0.939 -77.56 

PCA- RF 
Train 0.146 0.117 0.982 0.991 -727.0 

Test 0.345 0.276 0.895 0.946 -79.20 

 

As shown in Table 3, the ANN model 

demonstrates the best performance among the 

other machine learning models for train phase. 

The root mean square error (RMSE) is 

calculated 122 for this model, which is the 

lowest among the other models, indicating the 

least amount of error. Additionally, the 

calculated R-squared (R2) value for this model 

is 0.99, indicating a highly suitable and 

significant result. Subsequently, the R2 values 

calculated for the RF, SVM, and CART 

models are 0.98, 0.96, and 0.89, respectively. 

The best model in the training phase was the 

ANN model. ANN models are known for the 

best training accuracy, these models can train 

from complex phenomena’s behavior very 

accurately but the time of training can take 

longer than other models. On the other hand, in 

test phase, the performance of the ANN model 

did not yield the best results. During the testing 

phase, the SVM and RF models demonstrated 

the best performance. RMSE, MAE, R2, R and 

AIC for SVM model in testing phase were 

0.351, 0.263, 0.886, 0.944 and -77.85 and for 



250                                                                            Amini Rakan et al. /Water Harvesting Research, 2022, 5(2):241-256 

    

the RF model were 0.345, 0.276, 0.895, 0.946 

and -79.20, respectively. The calculated 

comparative indices for both models were very 

close to each other as shown in Table 3, but 

despite these indices and RMSE, the MAE for 

the PCA-SVM model were slightly lower than 

the PCA-RF model. This indicates that the 

SVM model has committed more significant 

errors in terms of magnitude, although its 

overall computations have resulted in lower 

error than the RF model. However, the R2, R, 

and AIC values of PCA-RF model, were better 

than the PCA-SVM model. Also, based on the 

results presented in Table 3, the poor 

performance of the CART model is clearly 

evident. All models in the current study 

showed significantly better performance than 

the stochastic models of the (Karimi et al., 

2016) study. 

Fig. 4 illustrates the observed and 

calculated data from the models during the 

testing and training phases. In Fig. 4, 

regression lines are also visible, indicating the 

relationship between the observed and 

calculated data.  

 

 
Fig. 4. Scatter plot of the observed and calculated data from models in both training and testing phases. 

 

As shown in Fig. 4, it is clear that the PCA-

CART model is not a suitable model for 

regression problems and the data has been 

classified using a classification approach but 

the modified version of it, the Random Forrest 

approach showed the best regression 

performance in this study. The classification 

tree of the PCA-CART model is shown in Fig. 

5. As shown in Fig. 5, the first branch of the 

classification tree is divided by the 0.322 value 

of the PCA1, which is the most important 

component of the Principal Component 

Analysis and in this study cover the 75% of the 

variance Fig. 3. As shown in Fig. 4 and Table 

3, all three models, PCA-RF, PCA-SVM, and 

PCA-ANN, have successfully predicted more 

than 90% of the observations accurately. 

However, all three models have encountered 

difficulties in predicting minimum values or 

values corresponding to zero snow cover in the 

watershed area, which mostly occurs in 

summer times. These models have tended to 

overestimate minimum values, predicting 

them to be greater than zero. The red triangles 

represent the performance of the models 

during the testing phase. In the PCA-ANN 

model shown in Fig. 4, it is evident that the test 

data demonstrates higher errors and deviated 

significantly from the regression line. 
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This observation further validates the 

results presented in Table 3, which indicate a 

substantial decrease in the performance of the 

PCA-ANN model during the testing phase. 

The structure of artificial neural networks 

(ANN) is designed in such a way that they can 

effectively learn from data and understand the 

relationships between variables. However, in 

some cases, this training phase with high 

accuracy can lead to model overfitting, 

primarily due to the presence of 

interdependencies  or among variables 

(Braspenning et al., 1995). Fig. 6, Fig. 7, Fig. 

8 and Fig. 9 display the observed and 

calculated data derived from PCA-ANN, PCA-

SVM, PCA, CART, and PCA-RF models. 

Additionally, the corresponding error values 

calculated from each model during both the 

training and testing phases are presented.  

 

 

 
Fig. 5. Classification tree of the PCA-CART model. 

 

 
Fig. 6. Observed and calculated values from PCA-ANN model with the error values calculated from both 

training and testing phases. 
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Fig. 7. Observed and calculated values from PCA-SVM model with the error values calculated from both 

training and testing phases. 
 

 
Fig. 8. Observed and calculated values from PCA-CART model with the error values calculated from both 

training and testing phases. 
 

 
Fig. 9. Observed and calculated values from PCA-RF model with the error values calculated from both 

training and testing phases. 
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All models have successfully predicted 

changes in snow cover extent within the 

Baranduz River basin. As observed, all models 

have performed well in predicting maximum 

snow cover points and demonstrated 

significant accuracy (Fig. 6, Fig. 7, Fig. 8, and 

Fig. 9). Additionally, the PCA-ANN model 

has performed perfect in predicting minimum 

points, both during the testing and training 

phases. However, other models, especially the 

PCA-CART model, showed poor performance 

in minimum points prediction, as they appear 

to overestimate the minimum snow surface 

levels compared to the actual values. 

Moreover, an increase in prediction error 

values during the testing phase is evident for 

all models, as expected from the results in 

Table 3. Fig. 6 to Fig. 9, clearly illustrate the 

increasing error values during the testing 

phase. The error plots for all models in the 

testing phase indicate higher values, except for 

the PCA-CART model, which exhibits higher 

errors in both the training and testing phases. 

Overall, the performance of all models has 

been acceptable, and the results show relative 

superiority compared to the (Karimi et al., 

2016) study. However, the PCA-SVM model 

has demonstrated lower error rates compared 

to other models, and the correlation between 

the actual and predicted data from the PCA-RF 

model has been higher than all of the other 

models. Choosing between the PCA-SVM and 

PCA-RF models is challenging due to the 

small differences in the model’s performance. 

Nevertheless, based on the Akaike Information 

Criterion (AIC), the PCA-RF model can be 

selected as the best model among the all 

studied models.  

 

4. Conclusion 

In this study, the snow cover extent and its 

changes in the Baranduz River basin have been 

modeled using machine learning models and 

40 meteorological parameters. Initially, the 

time series of snow cover was extracted from 

MODIS sensor data for the years 2000 to 2019 

and sorted on a monthly average basis. 

Additionally, 20 meteorological parameters 

from ground hydro climatology stations in 

Babarud and Bibakran, located within the 

basin area, and 20 meteorological parameters 

from the NASA LaRC project, were used as 

independent variables on a monthly basis. 

After standardizing and normalizing the data 

using the Box-Cox transformation, PCA 

(Principal Component Analysis) was applied 

to variables for dimension reduction purposes 

in models. The PCA1 to PCA6 orthogonal 

vectors were formed and used as inputs for the 

ANN (Artificial Neural Networks), SVM 

(Support Vector Machine), CART 

(Classification and Regression Trees), and RF 

(Random Forrest) models. 

The modeling results demonstrated that the 

machine learning models used in this study 

performed remarkably well and were capable 

of accurately predicting the behavior and 

changes of the snow cover in the Baranduz 

River basin. The R2 values for all models, both 

in the testing and training phases, exceeded 

0.87, indicating high performances of the 

models. The PCA-ANN model showed the 

best performance in the training phase, with 

the R2 value of 0.99, while in the testing phase, 

the PCA-SVM and PCA-RF models showed 

the best performance. The prediction error for 

the PCA-SVM model (MAE=0.263) was 

lower than the PCA-RF model 

(RMSE=0.276), but the correlation coefficient 

and coefficient of determination in the PCA-

RF model were higher (R=0.946, R2=0.895). 

Choosing the best model between these two 

models is challenging due to their slight 

performance differences. However, 

considering the lower value of the calculated 

Akaike information criterion (AIC=-79.20) 

and Root Mean Square Error (RMSE=0.345), 

the PCA-RF model demonstrated the best 

performance in modeling the snow cover 

extent in the Baranduz River basin. 

In conclusion, each model brings its 

strengths – SVM excels in capturing complex 

relationships, ANN handles intricate patterns, 

CART offers interpretable decision-making, 

and RF provides ensemble accuracy. The use 

and development of these models can 

significantly improve our understanding of 

snow cover dynamics, benefiting fields like 

water resource management, disaster 

preparedness, and ecological research. 
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