Beck, M. B., Kleissen, F. M., & Wheater, H. S. (1990). Identifying flow paths in models of surface water acidification. Reviews of Geophysics, 28(2), 207-229. doi: 10.1029/RG028i002p00207.
Clark, C. O. (1945). Storage and the unit hydrograph. Transactions of the American Society of Civil Engineers, 110(1), 1419-1446. doi: 10.1061/taceat.0005800.
Crawford, N. H., & Linsley, R. K. (1966). Digital Simulation in Hydrology'Stanford Watershed Model 4.
Farahani, S. V., Hejazi, S. M., & Boroomand, M. R. (2021). Torsional Alfvén wave cascade and shocks evolving in solar jets. The Astrophysical Journal, 906(2), 70. doi: 10.3847/1538-4357/abca8
Freeze, R. A., & Harlan, R. L. (1969). Blueprint for a physically-based, digitally-simulated hydrologic response model. Journal of hydrology, 9(3), 237-258. doi: 10.1016/0022-1694(69)90020-1.
Hromadka, T. V., & Whitley, R. J. (1994). The rational method for peak flow rate estimation 1. JAWRA Journal of the American Water Resources Association, 30(6), 1001-1009. doi: 10.1111/j.1752-1688.1994.tb03348.x.
Kokkonen, T. S., & Jakeman, A. J. (2001). A comparison of metric and conceptual approaches in rainfall‐runoff modeling and its implications. Water Resources Research, 37(9), 2345-2352. doi: 10.1029/2001WR000299.
Vidyarthi, V. K., & Jain, A. (2023). Development of simple semi-distributed approaches for modelling complex rainfall–runoff process. Hydrological Sciences Journal, 1-18. doi: 10.1080/02626667.2023.2197117.
Lee, K. K. F., Ling, L., & Yusop, Z. (2023). The Revised Curve Number Rainfall–Runoff Methodology for an Improved Runoff Prediction. Water, 15(3), 491.
Milly, P. C. D., & Eagleson, P. S. (1988). Effect of storm scale on surface runoff volume. Water Resources Research, 24(4), 620-624. doi: 10.1029/WR024i004p00620.
Namin, M. M., & Boroomand, M. R. (2012). A time splitting algorithm for numerical solution of Richard’s equation. Journal of Hydrology, 444, 10-21. doi: 10.1016/j.jhydrol.2012.03.029
Mulvaney, T. J. (1851). On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. Proceedings of the institution of Civil Engineers of Ireland, 4(2), 18-33.
Rezaie-Balf, M., Zahmatkesh, Z., & Kim, S. (2017). Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methods. Water Resources Management, 31, 3843-3865. doi: 10.1007/S11269-017-1711-9.
Shah, S. M. S., O'connell, P. E., & Hosking, J. R. M. (1996). Modelling the effects of spatial variability in rainfall on catchment response. 2. Experiments with distributed and lumped models. Journal of Hydrology, 175(1-4), 89-111. doi: 10.1016/S0022-1694(96)80007-2.
Sherman, L. K. (1932). Streamflow from rainfall by the unit-graph method. Eng. News Record, 108, 501-505. http://ci.nii.ac.jp/naid/10023998652/en/
Singh, V. P. (Ed.). (1995). Computer models of watershed hydrology (Vol. 1130). Highlands Ranch, CO: Water resources publications.
Stephenson, G. R., & Freeze, R. A. (1974). Mathematical simulation of subsurface flow contributions to snowmelt runoff, Reynolds Creek Watershed, Idaho. Water Resources Research, 10(2), 284-294. doi: 10.1029/WR010i002p00284.
Strapazan, C., Irimuș, I. A., Șerban, G., Man, T. C., & Sassebes, L. (2023). Determination of Runoff Curve Numbers for the Growing Season Based on the Rainfall–Runoff Relationship from Small Watersheds in the Middle Mountainous Area of Romania. Water, 15(8), 1452. doi: 10.3390/W15081452.