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Abstract 

Precipitation provides the most crucial input for hydrological modeling. Rainfall Estimation from rain 

gauges is the most common and traditional method have been used widely to measure rainfall at 

catchment scales. In many developing countries, a dense rain-gauge grid is generally unavailable, 

suffering from a sparse station distribution at high altitudes or in rural areas. Recent advances in 

remote sensing technologies have provided precipitation data with high spatial and temporal 

resolution. Accurate information on the benefits and deficits of these datasets is often lacking, 

especially over Iran. This study aims to provides a comprehensive evaluation of a good variety of 

state-of-the art precipitation datasets against 41 synoptic gauge observations, as a reference in the 

period of 2013 to 2020 over Iran. In particular, the performance of ERA5 as reanalysis, PERSIANN 

as satellite based, CHIRPS and PERSIANN-CDR as satellite-gauge precipitation products at daily, 

monthly and annual scale has been assessed. Statistical metrics, precipitation detection capability and 

false alarm ratio have been used to measure the accuracy of each product over spatial and time scales. 

The result show that over annual and daily scale PERSIANN-CDR product outperforms, and over 

daily scale PERSIANN-CDR and CHIRPS products perform well compared to ERA5 and 

PERSIANN products. The CHIRPS and PERSIANN-CDR products deliver reliable and useful ability 

of precipitation detection comparing to other products.  

Keywords: Evaluation indicators, Gridded datasets, Iran, Precipitation estimation. 

 

1. Introduction 

Precipitation is a major component of the 

hydrological cycle and a key environmental 

meteorology parameter of the environment (Li 

and Shao, 2010), it is known to be the primary 

input for most hydrological system (Duan et 

al., 2019). Rain gauges are considered the 

traditional method for measuring rainfall. 

They have been used historically to 

provide rainfall quantities and rates at a 

single point in space, and then generalized to a 

surface area. A dense rain-gauge grid is 

generally unavailable even in developing 

countries, particularly in mountainous areas 

where majority of rainfall takes place, and it 

often includes incorrect data or large gaps. 

Besides, rain gauge measurements are costly 

for data monitoring and data maintenance 

(Bitew and Gebremichael, 2011). Although 

rain gauge observations still show the most 

accurate measurement, the sparse and 

heterogeneous spatial distribution of rain 

gauges often results in inaccurate precipitation 

pattern. Hence, it is difficult to provide spatial 

data of precipitation with high resolution from 

traditional rainfall observations obtained from 

rain gauge stations (Wilheit, 1986). 

There are some problems associated with 

the rain-gauge and radars measurement; 

Ground rain-gauge have various problems 

such as high data deficits, wind effects, low 

number of stations and etc. (Maggioni et al., 

2016). Also, ground-based radar 

measurements are influenced by the signal 

weakness, the dispersion of the return surface 

and the uncertainty of the reflective 
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precipitation relationship (Einfalt et al., 2004). 

In the recent decades satellite precipitations 

have been recognized as a major approach to 

precipitation measurement. Remote sensing 

data provide a new way of identifying the 

spatial and temporal variation of precipitation 

with high precision (Xie and Xiong, 2011). 

Compare to the ground measurements such as 

rain-gauge and radars, satellite data are capable 

of covering the precipitation systems in a semi-

global scale, regardless of mountainous and 

oceanic terrain. 

A large number of precipitation-based 

satellite estimations and open-source analysis 

data with high spatial and temporal resolution 

is available in free and can be used to complete 

the rain-gauge data or even can be replaced 

with these types of measurements. (Fujihara et 

al., 2014). 

Generally, precipitation data can be 

categorized as the 4 following groups 

(Gorjizade et al., 2019): 

A- Rain-gauge data, based on the only 

observations from rain-gauge station, 

generated by using various interpolation 

methods. For instance, the monthly rainfall 

data of GPCC and CPC, are often available on 

a spatial scale larger than 0.5 degrees. 

B- Reanalysis data, based on reanalysis of 

historical data, by using atmospheric or 

numerical models of predicting weather. 

Inputs to these models are combination of 

satellite data and atmospheric observation at a 

specific location, for instance, NCEP-NCAR 

and ECMWF 

C- Satellite based data, by using infrared 

waves, microwaves or combination of those. 

For instance, TMPA 3B42 RT V7 

D- Satellite-Rain gauge data, based on 

combination of satellite and rain-gauge data. In 

this case biases of precipitation data reduced 

significantly. For instance, PERSIANN, 

CMORPH. The data for this group is available 

on a spatial scale of 0.25 degrees or less 

At locations where ground measurement 

does not exist, data processing by using one of 

the above-mentioned methods can be used to 

measure the precipitation values at a faster rate 

and more appropriate time. Over the past 

decades, as a result of many efforts done to 

produce satellite data, precipitation data are 

widely available at temporal and spatial scales 

Tapiador et al. (2012), and their values vary 

from region to region. 

Poméon et al. (2017) evaluated remote 

sensing and reanalysis data in the West African 

region, by comparing with the available rain-

gauge data; The results indicate that satellites 

data which use a multitude of input data, 

namely infrared and microwave satellite data, 

as well as observations from rain gauges, 

outperforms compared to others. 

Alijanian et al. (2017) evaluated 

precipitation pattern over Iran, by comparing 

products of CMORPH  ،PERSIANN-CDR  ،

PERSIANN  ،TRMM  ،MSWEP. Results 

indicate higher ability of PERSIANN-CDR to 

estimate precipitation. Tan and Santo (2018) 

compared GPM, IMERG, TMPA-3B42 and 

PERSIANN-CDR networked data in 

Malaysia. The results, using statistical indices, 

indicate all data except from PERSIANN-CDR 

are sufficiently appropriate. Gao et al. (2018) 

compared two monthly satellite data sets with 

high resolution in Xinjiang -China. The results 

show that, on a monthly and annual basis, 

CHIRPS presents more accurate data than the 

PERSIANN-CDR. Gorjizade et al. (2020) 

evaluate the accuracy of ERA-Interim, P-CCS 

and TRMM at Lidnek- Iran. Results show 

ERA-Interim has the best performance in the 

region. Wang et al. (2021) evaluated 

precipitation products in Yang-Tse river 

catchment. Results indicate that GLDAS 

products do not have appropriate performance. 

Rao et al. (2024) evaluates 11 sets of gridded 

precipitation products over the Qinghai-Tibet 

Plateau, the results of their research showed 

that the CMFD precipitation product 

performed better than other products at 

meteorological sites from the National 

Meteorological Information Center (NMIC), 

with average daily and monthly correlation 

coefficients (CCs) of 0.55 and 0.94 and root 

mean square errors (RMSEs) of 3.78 and 0.44 

mm/d, respectively 

In the table 1, the details of some research 

work carried out in world and the achieved 

results are presented. 

Since weather stations in Iran are dispersed 

and have incomplete information, evaluating 

the performance of satellite precipitation data 

in regions such as Iran of which considerable 

parts of area recognized as arid or semi-arid 

regions, are very necessary. The comparison 
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focuses on the identification of which product 

is the most accurate and that provides reliable 

rainfall pattern. 

It can be also useful to improve the 

performance of future versions of satellite 

precipitation data. This study aims to evaluate 

consistency of ERA5, CHRIPS, PERSIANN 

and PERSIANN-CDR precipitation products, 

which includes reanalysis, satellite based and 

satellite- rain gauge data, with local 

measurement of precipitation in synoptic 

station across the Iran.

 
Table 1. Comparison of evaluation studies at daily scale estimation. 

Reference Study area Period CC RMSE (mm/day) POD 

Rao et al.  (2024) 
over the Qinghai-

Tibet Plateau 
2010-2017 0.55 3.78 - 

Gomis-Cebolla et 

al.  (2023) 
over Spain 1951–2020 0.5-0.9 2-8 - 

Gorjizade et al.  

(2022) 

Maroon Dam 

basin 
2003-2014 0.5 5.5 0.42 

Gorjizade et al.  

(2020) 
Idenak, Iran 2003-2014 0.36-0.73 4.21-9.83 0.493 

Tan and Santo 

(2018b) 
Malaysia 

12 March 2014 to 

29 February 2016 
0.5–0.6 12.94–14.93 0.86–0.89 

Wang et al.  

(2017) 

Mekong River 

Basin, Thailand 

April to January 

2016 
0.58 - 0.73 

Yuan et al.  (2017) 
Chindwin River 

Basin, Myanmar 

April to January 

2016 
0.22–0.32 9.1–24.7 0.12–0.21 

Tan and Duan  

(2017) 
Singapore 

April 2014 to 

January 2016 
0.53 11.83 0.78 

Kim et al.  (2017) Korea, Japan 
March to August 

2014 
0.53–0.68 6.68–23.41 0.6–0.73 

Tang et al.  

(2016b) 

Ganjiang River 

Basin, China 

May to September 

2014 
0.62–0.9 4.44–13.09 - 

Tang et al.  

(2016a) 
China 

April to December 

2014 
0.96 0.5 0.91 

Sharifi et al.  

(2016) 
Iran 

March 2014 to 

February 2015 
0.4–0.52 6.38–19.41 0.46–0.7 

Sahlu et al.  (2016) Blue Nile Basin 
May to October 

2014 
0.55 - 0.87 

Ning et al.  (2016) China 
April 2014 to 

November 2015 
0.68 6.43 0.79 

Guo et al.  (2016) China 
12 March 2014 to 

31 March 2015 
0.93 0.56 - 

Updated and modified from the Table 9 adopted in Tan and Santo (2018b). 

 

It is notable that gauge observation is still 

the main and most reliable source of rainfall 

data. Hence, comparing the results of satellite 

precipitation products with ground observation 

is thoroughly fair and expected to leads us to 

the reliable results. The main purposes of this 

study can be named as follows: 

1- Spatio-temporal investigation of 

quantitative accuracy of satellite 

precipitation products (SPP) on daily, 

monthly and annual scales. 

2- Quantitative investigation of SPP accuracy 

in prediction of precipitation occurrence for 

various intensities, in 9 regions across Iran.  

3- Spatial analysis of existing errors in 

prediction of precipitation occurrence, in 9 

regions across Iran. 

This study will help scientists working over 

Iran to use reliable and accurate gridded 

rainfall estimate products to monitor and 

assess meteorological hazards. 

 

2. Materials and Methods 

2.1.  Study area  

Iran (25°-40° N, 45°-60° E) is located in the 

world’s dry belt, with annual precipitation of 

250mm or a third of the global average, 

ranging from 50mm in the deserts to 1600mm 

on the Caspian coast. Iran is one of the most 

mountainous countries bordering the Gulf of 

Oman, the Persian Gulf, and the Caspian Sea. 

Sixty percent of Iran is covered by mountains. 

The central parts of the country comprise two 

dry deserts: the Dasht-e-Kavir and the Dasht-

e-Lut. The country’s topography is dominated 

by two mountain ranges; The Alborz, a major 

mountain range along the Caspian Sea, located 

in northern Iran on the Iranian Plateau, with a 

maximum altitude of approximately 5000 m, 
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and the Zagros Mountains cross the country 

from northwest to southeast, reaches a 

maximum altitude of approximately 3500m. 

These two ranges play an influential role in 

determining the amount and distribution of 

rainfall over the country. Maximum 

precipitation falls on the Alborz and Zagros 

slopes, facing north and west, respectively, 

where the mean annual rainfall is more than 

1200 mm. while considering the changes in 

topography, precipitation varies drastically to 

less than 50 mm or 100 mm in other regions. 

Fifty-two percent of precipitation falls on 25% 

of the country’s land area; resulting in a lack of 

water resources and potential water crises in 

the near future.  

This study used data sets from different 

sources including in situ observation data, 

remotely sensed data, and reanalysis data. 

Herein, the station data were used to evaluate 

the accuracy of the satellite‐based, satellite‐

gauge rainfall products and reanalysis data. 

 

2.2.  Synoptic rain gauge-network data 

of Iran Meteorological Organization 

The synoptic gauge data have passed Iran 

Meteorological Organization quality control 

procedures such as checking location (latitude, 

longitude and elevation), consistency with 

other meteorological parameters, tests for data 

homogeneity, filling data gaps.  In this study, 

precipitation data of 41 synoptic weather 

stations in the period from 2012 to 2019 were 

used. It should be noted that the synoptic 

stations are more reliable because of occurring 

less human error in the process of observation 

Fallah et al. (2020). This study focuses on the 

time period 2012–2019 since, according to 

recorded stations ‘time series, the overall 

availability of the station measurements at 

daily, monthly and annual scales is highest in 

these years. Figure 1 shows the spatial 

distribution of the above-mentioned synoptic 

gauge stations over Iran. 

While the validation approach utilizing 41 

synoptic stations provides a robust framework 

for assessing the precipitation products, there 

are inherent limitations related to the spatial 

distribution of these stations that must be 

recognized. These factors may influence the 

overall results and interpretations of the study: 

Uneven Geographic Coverage: 

The synoptic stations are not uniformly 

distributed across Iran, with certain areas, 

particularly remote and mountainous regions, 

having fewer stations. This uneven coverage 

can lead to biases in the validation process, as 

local precipitation events in these 

underrepresented areas may not be adequately 

captured. 

Influence of Topography: 

The complex topography of Iran can 

significantly affect precipitation patterns. 

Areas with high elevation and rugged terrain 

may experience localized weather phenomena 

that are difficult to measure accurately with 

ground stations. As a result, the 

representativeness of the synoptic stations in 

these regions may be limited. 

Operational Challenges: 

Some synoptic stations may face 

operational issues, particularly in remote 

locations, leading to incomplete or intermittent 

data availability. This can introduce gaps in the 

dataset, affecting the reliability of the 

validation results. 

Seasonal and Temporal Variability: 

Validation results may be impacted by 

temporal variations in station operation, 

especially during peak precipitation seasons. If 

certain stations are not consistently operational 

during critical periods, it could skew the 

validation and reduce confidence in the 

findings. 

 

2.3.  Precipitation Dataset 

In this study, the data series of ERA5, 

CHIRPS, PERSIANN and PERSIANN-CDR 

were considered to evaluate precipitation data. 

The selection of ERA5, CHIRPS, PERSIANN, 

and PERSIANN-CDR was based on several 

criteria relevant to our study in the context of 

Iran: 

1. Data Availability and Coverage: These 

datasets are widely accessible and provide 

comprehensive spatial and temporal coverage 

for the study area in Iran, making them suitable 

for our analysis. 

2. Validation and Credibility: Each of these 

products has been subject to validation studies 

in similar climates. For instance, ERA5, as a 

reanalysis product, combines various 

observational data sources, while CHIRPS has 

proven effective for monitoring precipitation 

in arid and semi-arid regions like Iran. 
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3. Diversity of Methodologies: By 

including both satellite-derived (CHIRPS, 

PERSIANN) and reanalysis (ERA5) products, 

we aimed to capture a range of methodologies 

and their reliability in measuring precipitation 

in the region. This diversity allows for a more 

robust comparison and enhances the overall 

analysis. 

4. Relevance to Local Studies: Literature in 

the field has shown that these datasets perform 

satisfactorily in Persian Gulf countries and are 

relevant for water resource management and 

agricultural planning, which are critical issues 

in Iran. The information of these products is 

given in Table 2. In this section, a general 

overview and profile of the data series are 

presented. 

 

 
Fig. 1. Spatial distribution of selected synoptic weather stations over Iran 

 

Table 2. Summary of gridded precipitation products to be evaluated in this study 

Datasets Name Coverage Spatial resolution 
Temporal 

resolution 
Category 

Time 

period 

ERA5 Global 0.25° × 0.25° daily Reanalysis 

2
0

1
2

-2
0
1

9
 

CHIRPS 60°N-60°S 0.05° × 0.05° daily Satelite-Gague 

PERSIANN 60°N-60°S 0.25° × 0.25° daily Satelite 

PERSIANN-

CDR 
60°N-60°S 0.25° × 0.25° daily Satelite-Gague 

2.3.1.  ERA5  

ERA5 is a new reanalysis data set (fifth 

generation) developed by the European Center 

for (ECMWF). The most significant upgrades 

of this dataset, in comparison with ERA-

Interim are a better spatial network (31 km vs. 

79 km), higher temporal resolution (one hour 

versus 3 hours), 12 higher number of vertical 

surfaces (137 vs. 60), a new NWP model 

(IFS_Cycle_41r2) and an increase in the 

amount of data for data assimilation (Urraca et 

al., 2018). The dataset covers data from 1950 

to the near present time. In this study, daily 

precipitation data of ERA5 with a spatial 

resolution of 0.25 ° was used, and the data was 

extracted by using ECMWF_Web_API. The 

instructions for downloading the data is 

described in the following link. 

https://software.ecmwf.int/wiki/display/CK

B/How+to+download+ERA5data+via+the+E

CMWF+Web+API. 

 

 

 

https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5data+via+the+ECMWF+Web+API
https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5data+via+the+ECMWF+Web+API
https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5data+via+the+ECMWF+Web+API
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2.3.2. CHIRPS 

The Climate Hazards Group Infrared 

Precipitation with Stations (CHIRPS) dataset 

builds on previous approaches to ‘smart’ 

interpolation techniques and high resolution, 

long period of recorded precipitation estimates 

based on infrared Cold Cloud Duration (CCD) 

observations. CHIRPS data are available in 6 

hours to 3 months. 

CHIRPS is a quasi-global rainfall data set 

with relatively high spatial resolution (°0.05 × 

°0.05) and long-term temporal coverage from 

1981 to near real time (Funk et al., 2015), 

whose processing chain blends satellite and 

gauge rainfall estimates. The latest version of 

the data (second version) can be downloaded 

through the following link. CHIRPS used to 

monitor drought and climate changes in a 

quasi-global scale, also used for analysis of 

long-term trend (Gao, Zhang, Ren, et al., 

2018). In this study, daily gridded precipitation 

data of CHIRPS with a spatial resolution of 

0.05 ° was used. 

http://chg.geog.ucsb.edu/data/chirps/ 

 

2.3.3. PERSIANN 

PERSIANN-based satellite data is a 

precipitation estimation algorithm using 

remote sensing in which the basic algorithm is 

based on artificial neural network. The basic 

input of this model is the temperature of above 

the cloud obtained with the images of the 

cloud-infrared spectra from geosynchronous 

satellites including GoEs8 and GoEs9. The 

characteristic feature of geosynchronous 

satellite imagery is the high time resolution 

although the spatial resolution of these images 

is low due to the fact that the distance of this 

type of satellites is much higher than that of 

polar satellites. By using these images, 

PERSIANN estimates the precipitation rate at 

a given time (Hong et al., 2004). In order to 

increase spatial resolution, the algorithm 

implements the images of the TRMM 

NOAA13 and NOAA14 satellites which are 

polar orbit types and also the artificial neural 

network to obtain the spatial resolution of 0.25 

* 0.25 degrees at the half-hour time step. 

PERSIANN data are available for public use 

through the CHRS Data Portal 

at http://chrsdata.eng.uci.edu  

 

 

2.3.4. PERSIANN-CDR 

The PERSIANN-CDR data set is jointly 

developed by the University of California and 

the NOA, provides data from 1983 (Ashouri et 

al., 2015). PERSIANN-CDR uses from IR and 

MW satellite data, in rainfall estimation. 

Unlike the PERSIANN product, which is 

available in real time and regularly on the basis 

of satellite measurements, PERSIANN-CDR 

delivers GPCP data to estimate the rainfall 

(Tan and Santo, 2018b) In this study, 

PERSIANN-CDR daily precipitation data is 

used with spatial resolution of 0.25°. 

 

2.4.  Methodology 

The first stage before using rain gauge 

precipitation data, is data preparation, which 

firstly checks the data for continuity and 

consistency. The continuity of a record may be 

broken with missing data due to many reasons 

such as damage or fault in a rain gauge during 

a period. To ensure continuity, missing values 

in each precipitation data set, are estimated 

using data of neighboring stations. To ensure 

consistency, double mass-curve technique is 

used. This technique is based on the principal 

that when each recorded data comes from the 

same parent population, they are consistent.   

Precipitation data obtained from rain-gauge 

stations do not match the satellite precipitation 

dataset due to differences in scale (Duan et al., 

2016). To resolve this issue and do a fair 

comparison between SPPs and the 

precipitation gauges, pixel-to-pixel approach 

was conducted, where the precipitation values 

of gauges that located within the same pixel 

were averaged and compared. We only 

considered pixels that contain at least one 

precipitation gauge in this assessment to 

ensure a more accurate comparison. In case 

that there is no any rain gauge station within 

the same pixel, by using different interference 

techniques, such as Inverse Weighting (IDW), 

Thiessen Polygon, and Kriging methods, 

average value for this pixel is assigned.   

Several widely used statistical indices were 

selected to quantitatively evaluate the accuracy 

and error of satellite precipitation products 

against the ground observations data in 41 rain-

gauge stations across Iran. Figure 2 illustrates 

the procedure used and the steps taken to meet 

the goal of the study. 

 

http://chg.geog.ucsb.edu/data/chirps/
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2.5.  Evaluation Statistics  

In this study, IDW method, spatial analysis 

and Teylor diagram were used for annual and 

monthly evaluation, respectively. 

Furthermore, in order to do daily evaluation, 

five continuous statistics including 3 

evaluation statistics (continuous statistical 

criteria), RB, RMSE, CC and 2 precipitation 

detectability (categorized statistical criteria), 

POD, FAR were implemented to analyze these 

data. These criteria are presented in the Table 

3. 

 

 
Fig. 2. Flowchart of the methodology of study and the corresponding steps 

 

The relative bias (RBias) is defined as the 

difference between rain gauge observations 

and satellite rainfall estimates, shows how 

much the simulated values differ from the 

observed values and can be either positive or 

negative. A negative bias indicates 

underestimation of rainfall while a positive 

bias indicates overestimation. Underestimation 

will lead to values less than 1, and 

overestimating to values greater than 1. Root 

Mean Square Error (RMSE) which calculates 

a weighted average in accordance with the 

square error shows the difference between the 

distribution of observational data and the 

distribution of satellite estimates (Worqlul et 

al., 2014). The correlation coefficient (CC) is 

used to assess the agreement between gridded 

precipitation and rain gauge observations. The 

value of CC is such that −1 < CC < +1. A CC 

value of exactly +1 indicates a perfect positive 

fit, while value of exactly –1 indicates a perfect 

negative fit. If there is no linear correlation or 

a weak linear correlation, CC is close to 0 (Tan 

and Santo, 2018b). 

The Taylor diagram provides a graphical 

framework that allows a suite of variables from 

a variety of one or more models 

or reanalysis to be compared to reference data. 

Taylor diagrams provide a concise statistical 

summary of how well patterns match each 

other in terms of their correlation, their root-

mean-square difference and the ratio of their 

variances. This diagram is the result of three 

statistical criteria (STDEV, CC, RMSE). Each 

data set contains a real data, represented by a 

separate point in the Taylor chart; clearly the 

points are closer to the real point, have better 

performance according to the 3 above-

mentioned statistics. 

In addition, two categorical statistical 

indices (Wilks, 2011), including the 

probability of detection (POD) and false alarm 

ratio (FAR) are used to assess the rain-

detection capabilities of satellite rainfall 

estimations. POD represents the ratio of the 

correct identification of rainfall by satellite 

product to the number of rainfall occurrences 

observed by reference data; FAR denotes the 

proportion of cases in which the satellite 

records rainfall when the rain gauges do not; 

POD and FAR range from 0 to 1, with 1 being 

a perfect POD and 0 being a perfect FAR. 

 

http://climatedataguide.ucar.edu/reanalysis/atmospheric-reanalysis-overview-comparison-tables
http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.htm
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Pi is the predicted value, Gi is the observed 

value, H is the number of times that the 

observed rain is correctly detected, M is the 

number of observations that the observed rain 

has not been detected, and F is the number of 

times that precipitation has not occurred, but 

the model has shown the occurrence of the 

precipitation. 

 
Table 3. List of the statistical metrics used in the evaluation of precipitation products. 

the statistical metrics Equations Optimum Value 

Correlation Coefficient 
𝐶𝐶 =

∑ (𝐺𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝐺𝑖 − �̅�)𝑛
𝑖=1

2
√∑ (𝑃𝑖 − 𝑃)𝑛

𝑖=1
2

 
1 

Root‐mean‐square error 𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝐺𝑖)

2𝑛
𝑖=1

𝑛
 0 

Relative Bias 𝑅𝐵 =
∑ (𝑃𝑖 − 𝐺𝑖)
𝑛
𝑖=1

∑ (𝐺𝑖)
𝑛
𝑖=1

 0 

POD 
𝑃𝑂𝐷 =

𝐻

𝐻 +𝑀
 1 

FAR 
𝐹𝐴𝑅 =

𝐹

𝐻 + 𝐹
 0 

 

3. Results and Discussion  

3.1.  Climatology 

The average precipitation of Iran is 250 

mm and the coefficient of variation (CV) 

varies from 18% in north to 75% in southeast 

of the country (Dinpashoh et al., 2004). The 

maximum is about 1,800 mm on the Caspian 

seashore and about 400 mm in the sloping 

region of Alborz and Zagros mountains. The 

ranges of rainfall decrease to less than 100 mm 

annually depending on the location in the 

central and eastern parts of Iran.  

 

3.2.  Comparison of the Spatial 

Distribution of Annual Rainfall Between In-

Situ Observation and gridded Rainfall 

Products 

The overall analysis of the spatial 

distribution of annual mean rainfall averaged 

over years of 2012- 2019, illustrates the 

performance of each data set used in this study 

in comparison with the ground observation 

data, as shown in Figure 4. According to the 

results from measurements in rain gauge 

stations, a pattern of higher precipitation is 

commonly found in the northern and north-

western regions of Iran, while lower 

precipitation is distributed over the middle part 

of study domain. The rainfall values in the 

western parts of Iran are higher than eastern 

regions. The results of gridded precipitation 

data verified this matter.  

It can be seen that the range of rainfall 

estimation from PERSIAAN and PERSIAAN-

CDR products are between 0-250 mm and 0-

550 mm, respectively.  While the PERSIANN 

product (figure 4) highly underestimate annual 

average over the whole study domain, 

PERSIANN-CDR performs well over the 

study area, and in accordance with the range of 

precipitation data obtained from rain gauge 

stations. The products of ERA5 and CHIRPS 

exhibit a wide range of rainfall between 0-1750 

mm. The CHIRPS shows good correlation with 

rain gauge data specifically over the northern 

parts of Iran, where highest values of rainfall 

are recorded. However, CHIRPS slightly 

overestimate annual precipitation in that 

region. 

 

3.3.  Spatial Evaluation Using Standard 

Deviation, correlation coefficient, and 

RMSE Over Monthly Scale 

To evaluate the satellite rainfall estimates 

products with accuracy, the performance of 

each product over monthly scale in various 

regions of Iran, have been measured in all 

directions, using Taylor diagram. It is used to 

quantify the degree of correspondence between 

the SPPs and observed data in terms of three 

statistics of CC, RMSE error, STDEV. In 

Figure 5 it can be seen that CHIRPS product 

exhibits a perfect correlation with ground 

observation in north-west of Iran. While P-

CDR product shows relative agreement with 

ground observation in the west and east parts 

of Iran, products of ERA5 illustrate strong 

relationship with rain gauge data in the south-

east of Iran. The approximate correlation 

coefficient values for the above-mentioned 

relationships lies between 0.8-0.9.  

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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Also, Figure 5 shows that the lowest bias is 

registered in the central parts of Iran, regions 

in which high-pressure air masses reduce 

rainfall values. Contrary to the central part, in 

the north and west parts of Iran, highest rainfall 

values lead to the highest biases. The product 

of CHIRPS in the northern part Iran shows 

highest biases, which indicating a significant 

overestimation in that area.  

 

3.4. Comparison of Average Monthly 

Rainfall Time Series of Grounds Observed 

Data with Gridded Rainfall Products 

To analyze the trend of monthly rainfall, 

time series of monthly average precipitation 

during 2012 to 2019 depicted to show which 

product has a good rainfall distribution over 

the study domain. Figure 6 presents the spatial 

distribution of in situ rain gauge data, CHIRPS, 

P-CDR, ERA5, PERSIANN, averaged over 

short and long rains. During rainy seasons 

highest values of rainfall is recorded around 

55mm, while precipitation values decrease by 

half during short rains. Figure 6 shows the 

general pattern of monthly rainfall time series, 

including recognition of wet and dry seasons, 

several peaks and troughs captured by all 

precipitation products.  It can be seen that 

PERSIANN products, specifically during long 

rain, poorly capture rain values over the study 

domain, and slightly underestimates seasonal 

rainfall in comparison with ground 

observations. Hence, before using of 

PERSIANN precipitation products in any 

hydrological simulations, they should be 

reviewed. 

Overall, the performance of ERA5 and P-

CDR in capturing long rains are relatively 

good compared to other products used in this 

study, though they slightly overestimate 

seasonal rainfall along the studied period. It is 

notable that ERA5, P-CDR and CHIRPS 

products perform well in estimation lowest 

values of rainfall.  

 

 
Fig. 4. Spatial patterns of average annual precipitation (2012–2019) 
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Fig. 5. Taylor Diagram showing the evaluation of the satellite‐based rainfall products against ground 

observation (gauge) data over various regions 

 

 
Fig. 6. Time series of monthly average precipitation during 2012 to 2019 

 

  



Comparative Analysis of the Performance of Gridded Precipitation …                                                                               185 
 

3.5. Evaluation of temporal variability 

trend of monthly average precipitation of 

Gridded Rainfall Products with the RMSE 

and the ME 

Through the general analysis of monthly 

mean error, according to the figure 7, it was 

found that the PERSIANN product registered 

highest RMSE compared to the other products, 

ranging form-38 to 18. Also, it can be seen that 

in the years of 2015 and 2016 a sharp drop in 

RMSE values occurred, which indicates 

abnormally performance of PERSIANN 

product in rainfall estimation. 

 Figure 7 shows that, based on RMSE 

indicator, P-CDR outperforms against other 

products in capturing short and long rains. 

Figure 8 illustrates the seasonal distribution of 

RMSE(8-a) and ME(8-b) are varying from one 

product to another and from a season to 

another. Figure 8 exhibits RMSE values during 

the short rains season, start to decrees from 

March and reach to the lowest values 

(approximately 2 mm) in June, July, August 

and September. This is while during the large 

rain’s seasons (Sep-Feb), RMSE values 

increase drastically.  The P-CDE product has a 

very low RMSE compared to PERSIANN and 

other products (Figure 8-a), which means that 

it outperforms against other products in 

capturing short rains. Overall, except from 

PERSIANN product, the trend of RMSE 

variations is the same for the all-above-

mentioned products from Jan to Dec. Figure 8-

a shows that P-CDR and ERA5 product 

captured significantly low errors contrary to 

the products of PERSIANN and CHIRPS. The 

products of P-CDR and ERA5 present the 

highest RMSE in January, while CHIRPS and 

PERSIANN reveal the maximum error in 

March and in February, respectively.  

 

 
Fig. 7. Time series of monthly average error during 2012 to 2019 

 

 
Fig. 8. Average (a) RMSE and (b) ME of four precipitation products over 2012 to 2019 
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Figure 8-b carries out that the ME variation 

for the all products ranging from -15 to + 15. 

Likewise, PERSIANN RMSE ranging from -

15 to +10 over Jan to May, and from 0 to -15 

over Sep to Nov. This can be a sign that 

PERSIANN performance in capturing long 

rains is poor. 

 

3.6.  Daily Assessment of Grounds 

Observed Data and Satellite‐Based Rainfall 

Products  

The annual and monthly scales analysis is 

not enough to evaluate the performance of the 

satellite‐based rainfall estimates products. 

Therefore, an evaluation on daily scale for the 

period of 2012-2019 is of more concern. 

Figure 9 presents the correlation coefficient 

values between Grounds Observed Data and 

Satellite‐Based Rainfall Products. 

As presented by figure 9, pixels with purple 

color indicate regions which have higher 

correlation coefficient and in contrast pixels 

with green color on the map exhibits areas 

which have poor or even invers correlation 

coefficient. The averaged correlation 

coefficient over Iran presented by CHIRPS and 

P-CDR products at 0.37 and 0.35, respectively. 

This enable to see that in more than half of the 

study area, CC values for both CHIRPS and P-

CDR products are between 0.35 to 0.6. 

Contrary, analysis shows that the two products 

of ERA5 and PERSIANN have a very low CC 

value of 0.09 and 0.03, respectively. Likewise, 

the maximum recorded values of CC by ERA5 

and PERSIANN products are 0.3 and 0.2, 

respectively, showing the poor performance of 

these datasets in capturing rainfall values.  

The evaluation results show that in some 

parts of Iran, an inverse correlation exists 

between PERSIAAN products and ground 

observation. As presented by figure 9, the P-

CDR denotes high CC values in southern, 

western and south-western regions of Iran.  

 

 

 
Fig. 9. CC between Ground observation and gridded precipitation product at daily time scale 

 

While in other parts of the study area, the 

best results captured by CHIRPS. The analysis 

expresses the suitability of the mentioned 

products to fill the excising gaps in daily 

precipitation dataset. Overall, CC values are 

presenting the compatibility of P-CDR and 

CHIRPS with ground observation data, while 

ERA5 and PERSIANN do not show any 

meaningful correlation. 
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3.7.  Spatial Evaluation of Gridded 

Rainfall Products with the RMSE and RB 

Figure 10 shows the relative biases between 

ground observation and gridded rainfall 

products at daily scale. As it can be seen, all 

products exhibit negative bias in majority of 

the study area, meaning that they overestimate 

the amount of daily rainfall detected. whereas 

PERSIANN‐CDR presents a vast rate ranging 

from -2 to +2, ERA5 demonstrates ranges from 

0 to +8 meaning that it underestimates the 

amount of daily rainfall detected specifically in 

the central parts of Iran.  

The overall analysis shows that PERSIANN 

denotes a relatively lowest biases, ranging 

from 0 to +1, in detecting precipitation values.  

Figure 11 shows Root-mean-square error of 

daily precipitation between ground 

observation and gridded rainfall products at 

daily scale. 

As presented by figure 11, except from 

PERSIANN, all products show uniform spatial 

distribution, increasing from west to the east 

regions. It can be figured out that P-CDR 

and CHIRPS are the highest quality 

precipitation products over the study area. In 

the light of RMSE values, P-CDR has the best 

performance ranging from 0 to 5 mm. This 

enables to see that in the case of non-

recording gauge stations, products of P-CDR 

can provide a better representation of the rain 

gauge data. In contrary, PERSIANN has 

undergone the worst performance among 

others, with RMSE values ranging from 5 to 8 

mm. The overall analysis shows that the two 

products of ERA5 and CHIRPS have a very 

high RMSE, presenting a considerable 

overestimation of rainfall values. It is in 

agreement with the results of CHIRPS RMSE 

values in the northern parts of Iran ranging 

between 5 to 14 mm. 

 

3.8.  The daily assessment of 

precipitation detection capability and False 

Alarm Rate of Gridded rainfall products  

The figure 12 shows the performance and 

precipitation detection capability of gridded 

products on daily time scale. As it can be seen, 

the performance of all products is found to be 

improved moving from eastern regions of Iran 

towards western parts. The daily assessment of 

the performance and the precipitation detection 

capability allowed to depict that CHIRPS and 

ERA5 products present the highest and lowest 

detection ability compared to other products, 

respectively.  

 

 
Fig. 10. Relative bias between Ground observation and gridded precipitation product at daily time scale. 
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Fig. 11. RMSE between Ground observation and satellite -based precipitation product at daily time scale. 

 

 
Fig. 12. Probability of Detection of daily precipitation of gridded products 
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Fig. 13. False Alarm Rate of daily precipitation by gridded products 

 

As presented through figure 13, over whole 

study area except from some south-western 

parts of Iran, the P‐CDR denotes a relatively 

low FAR compared to other products 

expressing that there are approximately the 

same rainfall events observed compared to the 

detected events, whereas in the rest parts of 

Iran, CHIRPS exhibits the best performance 

compared to the other products. 

 

3.9.  Spatial Evaluation of daily 

precipitation intensities using probability 

density function (PDF)  

Figure 14 shows PDF (Tan and Santo, 

2018b) computed from the SPPs and the 

precipitation gauges over Iran, for seven 

classes of daily precipitation intensities. All the 

precipitation gauges and SPPs show that the 

highest percentage is at a precipitation class 

between 0 and 1 mm/day, specifically in 

southern, eastern and central parts of Iran, 

whereas the lowest percentage occurs at a 

precipitation class of > 50 mm/day, 

specifically in northern, north-western, north-

eastern and western parts of Iran.  

The performance of the PERSIANN-CDR 

product is the worst in capturing all classes of 

precipitation event, while the performance of 

the other SPPs relatively good for precipitation 

classes between 1 and 50 mm/day. In all 

regions of the study area, P-CDR shows the 

highest percentage at precipitation classes 

between 0.1-1 and 1- 2 mm/day, and the lowest 

percentage of no rainy days. It is evident that 

P-CDR predicts a larger number of rainy days 

compered to the other products.  

All the SPPs tend to overestimate the 

percentage of precipitation in southern, west-

southern and east-southern of Iran. In the 

northern regions, CHIRPS overestimate the 

percentage of precipitation classes more than 

50 mm/day.   

Generally, at majority of precipitation 

classes, all the SPPs tend to overestimate 

precipitation intensities, which is in agreement 

with the results of a study undertaken by Tan 

and Duan (2017). All the SPPs tend to 

underestimate the number of light (0 to 1 

mm/day) and violent (> 50 mm/day) 

precipitation events, but overestimate the 

moderate and heavy precipitation (1 to 50 

mm/day) classes. In all regions of Iran, except 

from southern, west-southern and east-

southern parts, all SPPs products present 

highest percentage at precipitation class 

between 2-5 mm/day, while precipitation 

gauges exhibit the highest percentage at 

precipitation class between 0.1-1 mm/day. 
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Fig.14. Probability density function (%) of the evaluated SPPs and rain-gauge station for the whole period 

over Iran 

 

4. Conclusion 

This study assessed the comparative 

analysis of the performance of rainfall 

estimates data set to evaluate the accuracy of 

each product and then depict which product 

highly performs and provides a reliable caption 

of rainfall amount over the study domain for a 

common period from 2012 to 2019. Ground 

observed data from 41 stations have been taken 

as a reference to evaluate point‐to‐pixel the 

performance of ERA5 as reanalysis data, 

PERSIANN as gridded data, P-CDR and 

CHIRPS as Satellite-Rain gauge data on 

monthly, annual, and daily time scale. Annual 

evaluation performed using IDW method, 

providing continues precipitation data set over 

study area. Monthly assessment of 

precipitation data and monthly evaluation of 

precipitation time series conducted using 

Taylor diagram in 9 defined regions 

throughout Iran. The capabilities of daily 

precipitation were validated with three main 

statistical metrics (CC, RMSE and RB). Also, 

the SPPs' performance examined in term of the 

precipitation detection ability, False Alarm 

Rate of daily precipitation and probability 

density function (PDF), in 9 different regions 

over study area. The main findings of the study 

are summarized, as follows: 

On annual scale, the P-CDR product 

outperforms compared to other satellite‐based 

rainfall products with averaged precipitation 

range between 0-250 mm over the whole study 

domain. The CHIRPS product overestimates 

the precipitation values although it shows a 

good spatial precipitation pattern, in agreement 

with ground observation data set. In contrary 

PERSIANN performed poorly in capturing 

spatial precipitation pattern. Also, PERSIANN 

underestimate the rainfall values over the study 
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area. On monthly scale, the performance of the 

satellite‐based rainfall data set is varying from 

one product to another, one season to another 

and from one region to another. The CHIRPS 

and P-CDR product outperforms compared to 

other satellite‐based rainfall products with CC 

at 0.85 in northern-west and western regions of 

study domain. Monthly assessment of 

precipitation time series of SPPs exhibits that 

performance of ERA5 and P-CDR is found to 

be the best in capering monthly peaks of 

precipitation. On daily scale, products of 

CHIRPS and P-CDR present more consistency 

with ground observation data set, whereas 

ERA5 and PERSIANN do not show a 

significant correlation. Overall P-CDR with 

the lowest RMSE value, outperforms against 

other products in capturing precipitation 

estimation. The results denote that in cases 

which lack of reliable observed data leads to 

imposing considerable errors to the estimation, 

P-CDR products as a supplementary data, or 

even suitable alternative of in situ rain gauge 

data, can be reliable source of data useful for 

hydrological application. The findings of 

this research are consistent with Alijanian et 

al. (2017).  

The daily assessment of the performance 

and the precipitation detection capability 

allowed to depict that relatively CHIRPS 

products present a good detection ability 

compared to the rest of precipitation products. 

Also, in term of FAR, P-CDR outperformed 

with the lowest amount of FAR. In term of 

Probability density function, in most regions of 

Iran the highest percentage is at precipitation 

class between 2-5 mm/day, while precipitation 

gauges exhibit the highest percentage at 

precipitation class between 0.1-1 mm/day. 

In light of our findings, we recommend the 

following areas for future research: 

Testing Datasets in Diverse Climatic 

Regions: 

Future studies could focus on applying the 

validated precipitation datasets in various 

climatic regions of Iran. Investigating how 

these products perform in different 

environmental contexts could provide insights 

into their overall adaptability and reliability. 

Exploring Advanced Precipitation 

Products: 

Research could also explore the 

performance of other advanced precipitation 

products or models, such as numerical weather 

prediction systems or machine learning-based 

methods. A comparative analysis would be 

beneficial to assess improvements over 

traditional datasets. 

Integration of Remote Sensing Data: 

Incorporating satellite-derived precipitation 

data could address some limitations identified 

in this study, particularly in remote areas. 

Future research could evaluate the synergies 

between ground-based and satellite 

observations to enhance precipitation 

estimation. 
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