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Abstract 

Canopy temperature (Tc) is one of the essential for irrigation scheduling. Measuring canopy 

temperature is expensive and time-consuming. Simple approaches such as soft computing can be a 

good tool for this purpose because there has been no documented research in this field. In this study, 

the ANN (MLP with two hidden layers) and GEP models were used to estimate Tc using limited data 

such as the dry (Ta) and wet bulb (TW) temperatures, saturation vapor pressure (es), actual vapor 

pressure (ea), and the vapor-pressure deficit (VPD). Six combinations of input variables were 

investigated. The perfect model was selected based on statistical indices during the training and 

testing. Results showed that the performance of the models were influenced by the number of the 

input variables. The MLP models outperformed GEP models during the training and testing 

processes. The MLP7 (input variables: es and ea) with MSE of 1.08 °C, RMSE of 1.04 °C, and R2 of 

0.92 in the training phase and MSE of 1.02, RMSE of 1.00, and R2 of 0.95 in the validation phase 

was selected as the perfect model among MLP models. The GEP11(input variables: Ta, TW, es, ea, 

and VPD) with MSE of 1.32, RMSE of 1.15, and R2 of 0.89 in the training phase and MSE of 0.91, 

RMSE of 0.95, and R2 of 0.95 in the validation phase was also the perfect model among GEP models. 

Accordingly, the proposed GEP and MLP models can be drawn on as a perfect model for estimating 

TC. 
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1. Introduction 

Canopy temperature is one of the main parts 

of the soil-plant-atmosphere energy that can be 

used as a valuable tool for showing the water 

status of plants and irrigation scheduling 

(Sánchez-Piñero et al., 2022). In addition, leaf 

temperature influences photosynthesis, 

respiration, and transpiration processes 

(Blonder and Michaletz, 2018). Canopy 

temperature can be affected by climatical 

factors such as air temperature, wet-bulb 

temperature, actual vapor pressure, saturation 

vapor pressure, and vapor-pressure deficit 

(O'shaughnessy et al., 2011, Blonder and 

Michaletz, 2018). Measuring canopy 

temperature with an infrared thermometer in 

an open field is time-consuming, high-priced, 

and unaffordable. Therefore, it is essential to 

estimate canopy temperature without cost 

using straightforward approaches such as data 

mining techniques (Van Klompenburg et al., 

2020). Various data mining techniques are 

being used extensively for many purposes in 

the agricultural sector, such as 

evapotranspiration (Antonopoulos and 

Antonopoulos, 2017; Valipour et al., 2019), 

crop yields (Taherei Ghazvinei et al., 2018), 

soil temperature (Seifi et al., 2021), and leaf 

area (Küçükönder et al., 2016). 

Artificial neural networks (often referred to 

simply as neural networks or connectionist 

models) offer a solution for tackling complex 

pattern-oriented challenges related to 

categorization and time-series analysis. Their 

nonparametric characteristic allows these 

models to be created without needing prior 

knowledge of the data population's distribution 

or potential interactions among variables, 
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which is a requirement for traditional 

parametric statistical methods (Walczak, 

2019). 

Artificial neural network (ANN), based on 

a deep learning technique, is increasingly 

applied in nonlinear data modeling (Adisa et 

al., 2019, Mahanti et al., 2022). Many 

researchers have used ANNs for simulating 

different parameters in agriculture such as  

Heramb et al. (2022),  Monteiro et al. (2021),  

Han et al. (2021),  Gavahi et al. (2021) and 

Elbeltagi et al. (2020).  

Gene expression programming (GEP) 

programs consist of intricate tree structures 

that evolve and adjust by altering their sizes, 

shapes, and components, similar to a living 

organism. Additionally, akin to living beings, 

GEP's computer programs are encoded in 

straightforward linear chromosomes of a 

predetermined length (Ferreira, 2001). These 

software, a genotype/phenotype genetic 

algorithm, is an artificial intelligence model 

widely used to model nonlinear operations. 

According to the literature, these models are 

accurate and can be developed and evaluated 

for different purposes. 

 Maize is one of the main crops in Iran. 

Hence, the canopy temperature estimation for 

this plant can be a cost-effective tool for water 

stress management and irrigation schedule. 

Best of our knowledge, only a little research 

has been conducted on the canopy temperature 

estimation. Thus, this study aimed to develop 

a new approach for estimating the canopy 

temperature of Maize using GEP and ANN 

models (MLP) and evaluating the performance 

of these models using statistical indices. 

 

2. Materials and Methods 

2.1. Experiment area 

In this study, two experiments were 

conducted using summer and winter planting 

of Maize during 2013-2014 at the research 

field of Shahid Chamran University of Ahvaz, 

Ahvaz, Khuzestan province, Iran (31°18'10''N, 

48°39'41''E, 20m above sea level (Figure1)). 

The soil of the area was silty loam. In the first 

and second experiments, grain Maize (variety 

SC704) was planted on July 23, 2013, and 

February 23, 2014. Surface irrigation with 

seven days interval was applied during two 

growing seasons. The soil-water status was 

monitored and measured before irrigation 

using the gravimetric method to determine the 

water required. The average of maximum 

temperature, minimum temperature, relative 

humidity, wind speed, and precipitation during 

the first growing season was 34.94°C, 22.25°C, 

41%, 5.42 m.s-1, and 1.9 mm.d-1. These values 

were 38.2°C, 19.35°C, 39.37%, 5.55 m.s-1, and 

2.5 mm.d-1 for the second season. The field 

capacity and wilting point in the upper 90 cm 

soil profile were obtained at 0.32 and 0.15 

m3m-3. 

 

 
Fig. 1. Location map of the study area 

 

2.2. Field measurements 

Canopy temperature measurements were 

taken from 27 August 2013 (first growing 

season) and 10 April 2014 (second growing 

season), respectively when canopy cover was 

approximately 80-85%. The measurement was 
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taken during 8 days in the first season and 7 

days in the second season (Table 1) using a 

handheld infrared thermometer (IRT) 

equipped with an 8-14µm band-pass spectral 

filter with a minimum measurement diameter 

of 6 mm and a distance-to-spot size ratio (D:S) 

of 8:1 (Reyteck model, Fluke Corporation, 

USA). Measuring through the days following 

irrigation, started from 08.00 am to 02.00 pm 

on an hourly interval under clear sky from the 

north, south, east, and west directions, and then 

averaged. The dry and wet bulb temperatures 

were also calculated at each time of 

measurement using an adjusted psychrometer 

at the height of 2 m near the research field. 

 The saturation vapor pressure (es), the 

actual vapor pressure (ea), and the vapor 

pressure deficit (VPD) of the air were 

measured as (Allen et al., 1998): 

 

𝑒𝑠 = 6.047 × 𝑒𝑥𝑝[17.27
𝑇𝑑𝑟𝑦

𝑇𝑑𝑟𝑦 + 237.3
] (1) 

𝑒𝑎

= [
(0.6108 × exp (17.27

𝑇𝑑𝑟𝑦

𝑇𝑑𝑟𝑦 + 237.3
))

−(0.0012 × 101.03 × 𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡)

]

× 9.9 01   

(2) 

𝑉𝑃𝐷 = 𝑒𝑠 − 𝑒𝑎 (3) 

where 𝑒𝑠 is the saturation vapor pressure 

(mbar), 𝑇𝑑𝑟𝑦 is the air temperature (°C), 𝑇𝑤𝑒𝑡  

is the wet bulb temperature, 𝑒𝑎 is the actual 

vapor pressure (mbar), and VPD is the vapor-

pressure deficit (mbar). Statistical properties of 

the data used in this research are provided in 

Table 2. 

The correlation of the measured 

meteorological variables with Tc is depicted in 

Figure 2. It can be seen that the linear 

correlation between the canopy temperature 

and Ta (0.835), Tw (0.850), and es (0.773) is 

stronger than that of ea (0.550) and VPD 

(0.363). It is essential to evaluate the 

combination of these variables to estimate Tc. 

 

2.3. Estimation of Tc using ANN and GEP 

2.3.1. ANN models 

In this study, MLP was applied to predict Tc 

using a different combination of variables 

(Table 4), such as Ta (
°C), Tw (°C), es (mbar), 

ea (mbar), and VPD (mbar). After normalizing, 

all data (100 data points) were randomly 

divided into three parts, including training 

(70%), testing (15%), and validation (15%). In 

this study, MATLAB 16b was used to analyze 

various trials to find the best MLP structure. 

To analyze various architectures of MLP 

models, feed-forward networks with four 

layers, including the input layer, two hidden 

layers, and the output layer were used. 

Levenberg-Marquart backpropagation was 

utilized for the training algorithm. To find the 

best number of neurons in hidden layers, a trial 

and error was conducted. In this process, the 

number of neurons in the hidden layer varied 

from 2 to 10.  

 
Table 1. The dates of measurements in two 

growing seasons 
First season 

(Summer Maize) 

Second season 

(Winter Maize) 

2013-08-27 2014-04-10 

2013-09-03 2014-04-17 

2013-09-10 2014-04-24 

2013-09-17 2014-05-01 

2013-09-24 2014-05-08 

2013-10-03 2014-05-21 

2013-10-10 2014-05-29 

2013-10-17  

 

Table 2. Statistical properties of the study data 
Variables Minimum Maximum Average  Median Standard deviation 

Ta (°C) 17.5 46 33.745 34 6.048 

Tw (°C) 14 37 26.14 26 4.757 

es (mbar) 19.802 99.849 54.449 52.67 17.715 

ea (mbar) 11.026 51.62 25.588 22.096 9.862 

VPD (mbar) 5.196 61.227 28.875 27.136 13.755 

Tc (°C) 18.703 37.921 29.969 30.108 3.748 
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Fig. 2. Correlation of the measured meteorological variables with Tc 

 

2.3.2. GEP models 

GEP is a genotype/phenotype genetic 

algorithm that uses a population of individuals 

(chromosomes). In the GEP, chromosomes 

that consist of one or more genes are encoded 

as linear entities of fixed length. Then, these 

chromosomes are converted into nonlinear 

entities of various sizes and shapes (expression 

trees). The individuals are evaluated using 

fitness functions. The solving process starts 

with creating a random individual generation 

as the initial population.  

Then, these individuals are assessed by 

fitness functions. Afterward, the selected 

generation is reproduced by modification 

processes such as mutation, inversion, 

transposition, and recombination. These 

processes are repeated to find the best solution. 

GeneXproTools 5.0 was used to conduct GEP 

modeling. The result of GEP modeling was a 

clear mathematical expression that indicates 

the relationship between independent variables 

(inputs) and dependent outputs. In this study, 

the input variables for GEP models were 

different combinations of Ta, Tw, es, ea, and 

VPD.  

Seventy percent of all data (70 data points) 

were considered for the training, 15% (15 data 

points) for testing phase, and the rest of the 

data were used for validation (15 data points). 

Tc (
°C) was used as the output variable. 

 

 

2.4. Statistical analysis 

In this study, the performance of developed 

models was evaluated using statistical indices 

such as the coefficient of determination (R2), 

the mean some of the square (MSE), and the 

root means square error (RMSE). 

R2 indicates the correlation between the 

estimated values of the models and the 

measured values. It ranges from 0 to 1, where 

1 shows the perfect correlation. RMSE and 

MSE range from 0 to +∞, and the perfect value 

is 0. 

R2 =
(∑ (Tco,i − Tco

̅̅ ̅̅ )(Tce,i − Tce
̅̅ ̅̅ )n

i=1 )2

∑ (Kco,i − Kco
̅̅ ̅̅ ̅)2n

i=1 . ∑ (Kce,i − Kce
̅̅ ̅̅ ̅)2n

i=1

 (4) 

𝑀𝑆𝐸 =
∑ (Tco,i − Tce,i)

2n
i=1

n
   (5) 

RMSE = √
∑ (Tco,i − Tce,i)

2n
i=1

n
 (6) 

where Tco,i and Tce,i are the observed 

(measured) and the estimated values of Tc. Tco
̅̅ ̅̅  

and Tce
̅̅ ̅̅  indicate the mean values of the 

observed and estimated values. Note that in 

this study, RMSE and MAE are in °C. 

 

3. Results and Discussion 

3.1. ANN models with two hidden layers 

and different input variables  

11 top MLP models were obtained for 11 

combinations of input data variables based on 

the MSE and RMSE indices. To find the best 

number of neurons for two hidden layers, trial 

and error was conducted.  
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The values of MSE, RMSE, and R2 for each 

model are indicated in Table 3. MLP1 structure 

with the corresponding weights and bias values 

are illustrated in Figure 3. 

As shown in Table 3, 11 developed models 

were divided into five main groups to examine 

the effect of different input values in MLP 

models to estimate TC values using limited 

data. It can be found from the Table 3 that the 

performance of each model  during training 

and testing was approximately the same. A 

comparison between the result of different 

groups in Table 3 showed that, in group one, 

MLP2, MLP3, and MLP1 with RMSE of 1.32, 

1.41 and, 1.41°C in the training phase and 

1.33, 1.38 and, 1.4°C in the testing phase 

respectively, have better performance than 

MLP5 and MLP4  with the RMSE of 2.58 and 

2.24 °C in the training phase and 2.55 and 2.28 

°C in the testing phase. These results are also 

confirmed by the MSE and R2 values. It can be 

found that TW, es, and ea can be proposed as 

better input variables of MLP models if one 

input variable is used for estimating TC.  

In group 2, MLP6 which applied Ta and Tw 

as input variables, the MSE, and RMSE 

decreased by 44% and 24.8 % during the 

training and 45.6% and 26.4% during the 

testing compared to MLP1 which used only 

Ta. 

 

 
Fig. 3. The best MLP6 structure 

 
Table 3. The best number of hidden neurons, activation functions and structures of MLP models 

Model Input Variable combinations Group structure 

Training` Testing 

MSE 

(°C) 

RMSE 

(°C) 
R2 

MSE 

(°C) 

RMSE 

(°C) 
R2 

MLP1 Ta 1 1-4-8-1 2 1.41 0.87 1.95 1.4 0.85 

MLP2 Tw 1 1-2-6-1 1.74 1.32 0.88 1.76 1.33 0.83 

MLP3 es 1 1-2-3-1 1.99 1.41 0.87 1.92 1.38 0.81 

MLP4 ea 1 1-6-5-1 5.02 2.24 0.65 5.2 2.28 0.78 

MLP5 VPD 1 1-6-7-1 6.67 2.58 0.50 6.52 2.55 0.65 

MLP6 Ta+ Tw 2 2-5-4-1 1.12 1.06 0.91 1.06 1.03 0.91 

MLP7 es+ea 2 2-3-6-1 1.08 1.04 0.92 1.02 1.00 0.95 

MLP8 Ta+ Tw+VPD 3 3-2-3-1 1.31 1.14 0.91 1.27 1.13 0.79 

MLP9 es+ea +VPD 3 3-3-3-1 1.22 1.10 0.91 1.20 1.09 0.93 

MLP10 Ta+ Tw+ es+ea 4 4-4-3-1 1.12 1.06 0.92 1.14 1.07 0.88 

MLP11 Ta+ Tw+ es+ea+VPD 5 5-3-2-1 1.34 1.16 0.89 1.30 1.14 0.92 

 

Levenberg-Marquardt was used as train 

function. Levenberg-Marquardt is a popular 

trust region algorithm used in computer 

science to minimize a function by internally 

modeling a trusted region with a quadratic 

function. It is sensitive to initial starting 

parameters and is commonly implemented 

using finite differences to approximate the 

Jacobian matrix (Chakrabarti et al., 2012; 

Zeynali and Hashemi, 2016). 

In another case of input variable 

combinations of group2, the RMSE value of  
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MLP7, which used ea and es as the input 

variable, decreased by 54% in the training 

phase and 56% in the testing phase compared 

to MLP4 which used only ea as an input 

variable. A comparison from the statistical 

indices of models in group 1 and group 2 

shows that MLP models with more than one 

input variable show better performance. This 

reflects that of Heramb et al. (2022), who also 

found that the least RMSE is obtained when 

one variable is used to estimate 

evapotranspiration using GEP and ANNs 

models.  

Leaf temperature could not be isolated as a 

function of one parameter such as air 

temperature. It is a term for nonlinear functions 

containing vapor pressure, convective 

resistance, air temperature, mas density of air, 

wind speed, and stomatal ratio, etc. (Blonder 

and Michaletz, 2018). Mostafa et al. (2012) 

and SAMMEN (2013) also showed that 

combining all parameters performs better than 

using individual parameters.  

In group 3, MLP8 (with a combination of 

Ta, Tw and VPD), and MLP9 (with a 

combination of es, ea and VPD) were 

examined. The results showed that adding this 

parameter had no significant influence on 

estimating Tc because the values of MSE in 

MLP8 and MLP 9  roughly increased (7.4% 

and 13% ) compared to MLP6 and MLP7.  

The integration of input variables of MLP6 

(Ta, Tw), and MLP7 (es, ea) were used in 

MLP10 to examine the influence of using four 

input variables to estimate TC (group 4). The 

result showed that this integration did not 

improve the estimation process significantly 

because the MSE value in MLP10 during 

testing increased by 7.5% and 11.8 % 

compared to MLP6 and MLP7. 

MLP11  in group 5, which used all the input 

variables, achieved MSE of  1.34 and 1.30 0C 

and the RMSE of 1.16 and 1.14 0C during the 

training and testing. A comparison of the MSE 

and RMSE of MLP11 with those of MLP6 and 

MLP7 shows that,  this combination also 

couldn’t improve the estimation of TC. Thus, 

the models that showed better results are 

briefly sorted according to the MSE, RMSE 

and, R2 values as follows: MLP7> MLP6 

>MLP10> MLP9> MLP8> MLP11> MLP2> 

MLP3> MLP1> MLP4> MLP5.  

 

3.2. Developed GEP models 

The effective parameters utilized in GEP 

models are illustrated in Table 4. Mathematical 

operators used to extract the best result include 

basic arithmetic operators (+, -, *, /) and 

mathematical functions (√, ln(x), X2, X3) 

(Shiri, 2017). The linking function "addiction" 

was chosen to link the mathematical terms 

(Mattar, 2018). In this study, three genes were 

applied in all models. MSE and RMSE were 

used for the fitness function. Other parameters 

in Table 4, such as the mutation rate, the 

transposition rate, and the recombination rate 

were considered constant in all models. The 

best-extracted equations (an arithmetic form of 

expression trees) of all evaluated models are 

given in Table 5.  

The performance of the models during 

training and testing was evaluated using 

statistical indices (Table 6). The Taylor 

Diagram which shows the R2 values of GEP 

models during testing was indicated in Figure 

3. 

As shown in Table 6 and Figure 4, during 

training, the MSE, RMSE, and R2 values of the 

developed models ranged from 1.29 to 7.3 °C, 

1.13 to 2.7°C, and 0.45 to 0.91, respectively. 

These values during testing ranged from 0.91 

to 7.33 °C, 0.95 to 2.7°C and 0.65 to 0.95, 

respectively. 

Results showed that in the group one, 

GEP2, GEP3, and GEP1 with RMSE of 1.27, 

1.46 and, 1.5°C during training and 1.35, 1.37 

and, 1.38°C during testing, have better 

performance than GEP5 and GEP4  with the 

RMSE of 2.7 and 2.27 °C during training and 

2.7 and 2.17 °C during testing. Looking at 

Fig.5, it is apparent that GEP4 and GEP5 

showed a weak correlation with measured TC.  

Models of Group 2 that used two variables 

as input, consist of GEP6 and GEP7. In GEP6, 

which used Ta and Tw, the MSE decreased by 

40% and 17.2 % during training and 42.1% and 

40% during testing compared to GEP1 and 

GEP2, which used only Ta and TW, 

respectively. The MSE value of GEP7 which 

used es and ea as the input variable, decreased 

by 30% and  71% during training and  by 

45.5% and 78.3% during testing compared to 

GEP3 and GEP4. A comparison of the 

statistical indices of models in group 1 and 

group 2 revealed that using two input variables 
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also increased the ability of GEP models to 

estimate TC.   

 In group 3, the MSE of GEP8,  which used 

Ta, Tw, and VPD, decreased by 3.7% during 

training compared to GEP6, and the MSE of  

GEP9  increased by 9.3% compared to GEP7. 

Comparing the R2, RMSE and MSE values, it 

can be illustrated that no significant 

improvement in estimating TC was detected by 

using VPD. These results are consistent with 

our earlier finding, which showed that in MLP 

models, VPD was not an influential variable 

for estimating TC.   

GEP10, which applied Ta, Tw, es, and ea as 

input variables, achieved the MSE of 1.33 °C 

during training, which was not significantly 

different with those of GEP6 and GEP7. 

Although the results showed that GEP10 

trained roughly better than GEP7, the 

derivatives of the MSE during testing indicated 

that the performance of GEP10 (1.09) was not 

improved than GEP7 (1.03). These results are 

in line with those of earlier finding about 

comparing MLP10 with MLP6 and MLP7. 

 
Table 4. Effective parameters during optimal 

evolution in GEP for Tc modeling  
Parameters Values 

Number of chromosomes 30 

Head size 8 

Number of genes 3 

Independent variables Ta, Tw, es, ea, VPD 

Dependent output Tc 

Mathematical operators +, -, *, /, √, ln(x), X2, X3 

Fitness function MSE 

Linking functions Addition 

Mutation rate 0.00138 

Inversion rate 0.00546 

Gene transposition rate 0.00277 

IS transposition rate 0.00546 

RIS transposition rate 0.00546 

Gene recombination rate 0.00277 

One-point recombination rate 0.00277 

Two-point recombination rate 0.00277 

Table 5. The best equations extracted after training and testing 

Model Extracted equation 

GEP1 TC = ln ((−289.29 + 𝑇𝑎
2) × 𝑇𝑎) + (0.382𝑇𝑎 + 0.715) + √6.5 × √𝑇𝑎 

 

GEP2 𝑇𝐶 = (1 + √35.36𝑇𝑊) + (

2.64

𝑇𝑊
− 13.49

𝑇𝑊

2.64
+ 2.64

)

3

− (
1

2𝑇𝑊 − 57.4
) 

 

GEP3 
𝑇𝐶 = (√𝑒𝑠

2 + 3.78 +
𝑒𝑠 − 0.68

0.68𝑒𝑠
) + ((−5.87 − 𝑒𝑠) + (10.16 ln 𝑒𝑠)) + ((

𝑒𝑠 +
𝑒𝑠

4.65

14.89 − 𝑒𝑠
) − (ln 𝑒𝑠 − 1.72)) 

GEP4 𝑇𝐶 = ((√1.9𝑒𝑎) + (8.71 − 𝑒𝑎)) + (ln( ln(𝑒𝑎 − 10))) + (√4𝑒𝑎 ln 2𝑒𝑎) 

GEP5 𝑇𝐶 = (ln (((
123.9

𝑉𝑃𝐷 − 5.54
) − (𝑉𝑃𝐷2))

2

)) + ((
−2.31

𝑉𝑃𝐷 − 7.58
) − 𝑉𝑃𝐷) + (𝑉𝑃𝐷 + 1725) 

 

GEP6 
𝑇𝐶 = (𝑇𝑊 (ln(√ln (42.45 −

𝑇𝑎
7.28

))))+ (ln (−7.06((10.94 − 𝑇𝑊) + (4.21/𝑇𝑊)))
2
) + ((

𝑇𝑎
2

𝑇𝑊
) × (

𝑇𝑎 + 𝑇𝑊

𝑇𝑊
2 )) 

 

GEP7 𝑇𝐶 = (𝑒𝑎 + (
15.03

7.96 + (7.93 − 𝑒𝑠)
)) + ((√𝑒𝑠 + 6.1) − (𝑒𝑎 − 9.31)) + (√(𝑒𝑠 − 29.44) + (2𝑒𝑎 − 10.7)) 

GEP8 𝑇𝐶 = (
𝑇𝑊

3

56.92𝑇𝑎√𝑇𝑎
) + (√(2𝑇𝑎√𝑇𝑎) − (−9.91𝑇𝑎 − 𝑇𝑊)) + (

(𝑇𝑊 − 23.33) + (𝑇𝑊 − 4.6)

𝑉𝑃𝐷
) 

GEP9 

𝑇𝐶 = ((ln(51.67 − 𝑒𝑎)) + ((
𝑒𝑎
2.49

) + (𝑉𝑃𝐷 + 6.82))) + (
(−3.69𝑒𝑠) + (𝑉𝑃𝐷 + 7.83)

0.59(−6.34 − 𝑒𝑎)
)

+ (−1.05(((𝑉𝑃𝐷 − 0.68) + (
20.57

𝑉𝑃𝐷
)) − √5.6)) 

GEP10 𝑇𝐶 = 𝑇𝑊 + (√(
2𝑇𝑊

𝑒𝑠 + 5.31
)
4

+ 4.11) + 

(

 
 
(ln 𝑒𝑠) − ((𝑇𝑊 − 𝑒𝑎) − (

𝑇𝑊

𝑇𝑎
))

−3.61

)

 
 

 

GEP11 𝑇𝐶 = (ln(52.77 + (𝑉𝑃𝐷 − 𝑒𝑠)) + 16) + ((𝑇𝑊 + (
𝑒𝑠
2𝑒𝑎

)) − (√7.77 + 𝑒𝑎))((𝑒𝑎 + 7.11) + (−18 − (𝑒𝑠 − 𝑉𝑃𝐷))) 
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Table 6. Statistical indices of GEP models during the training and testing phase 

Model 
Input Variable 

combinations 
Group 

Training` Testing 

MSE 

(°C) 

RMSE 

(°C) 
R2 

MSE 

(°C) 

RMSE 

(°C) 
R2 

GEP1 Ta 1 2.24 1.5 0.85 1.9 1.38 0.87 

GEP 2 Tw 1 1.62 1.27 0.89 1.84 1.35 0.81 

GEP 3 es 1 2.14 1.46 0.86 189 1.37 0.82 

GEP 4 ea 1 5.17 2.27 0.63 4.74 2.17 0.78 

GEP 5 VPD 1 7.30 2.7 0.45 7.33 2.7 0.65 

GEP 6 Ta+ Tw 2 1.34 1.16 0.91 1.1 1.2 0.89 

GEP 7 es+ea 2 1.5 1.23 0.88 1.03 1.0.2 0.95 

GEP 8 Ta+ Tw+VPD 3 1.29 1.13 0.91 2.03 1.42 0.71 

GEP 9 es+ea +VPD 3 1.64 1.28 0.87 1.3 1.14 0.91 

GEP 10 Ta+ Tw+ es+ea 4 1.33 1.15 0.91 1.09 1.04 0.87 

GEP 11 Ta+ Tw+ es+ea+VPD 5 1.32 1.15 0.89 0.91 0.95 0.95 

 

 

 
Fig. 4. The determination coefficient of GEP 

models during training (A) and testing (B) 

 

All of the meteorological variables were 

implemented in GEP11. This model achieved 

the MSE of 1.33 0C and 0.91 0C during training 

and testing. Comparison of these results with 

those of GEP10 confirmed that the MSE and 

RMSE values in testing decreased by 16.5%, 

and 8.6% and the R2 value increased by 8.7%, 

and ranked as the first GEP model.  The 

models that showed better results are briefly 

sorted according to the MSE, RMSE and R2 

values in testing as follows: GEP11>GEP7> 

GEP6≥ GEP10> GEP9> GEP8> GEP 2> GEP 

3> GEP 1> GEP4> GEP5.  A comparison 

between statistical indices of MLP and GEP 

models in showed that MLP models trained 

and performed better than GEP models.  
 

3.3. Validation of developed GEP and 

ANN models  

In this study, 15% of the data was used for 

validation tests. The statistical indices for 

evaluated models are shown in Table 7. 

Mahanti et al. (2022) reported that the best 

model could be chosen based on a validation 

tests. Results of the validation test showed that 

MLP models performed better than GEP 

models to estimate TC. MLP and GEP models 

with multiple input variables achieved better 

statistical indices. The data in Table 7 suggest 

that the perfect MSE and RMSE were 

observed in MLP7 and GEP7, and the worst 

values were observed in MLP5 and GEP5. 

Although GEP11 performed better than GEP7 

in training and testing, the result was versus in 

validation. On the other hand, GEP7 

performed better than GEP11. It seems it is 

because of the different statistical properties in 

data sets used in various processes. Maier et al. 

(2010) reported that the best possible model 

would obtain if the statistical properties of the 

training, testing, and validation data sets were 

the same. 

 

4. Conclusion 

This study aimed to evaluate the ability of 

ANN (MLP) and GEP models to estimate the 

canopy temperature (Tc) using limited climate 

data. To this purpose, various combinations of 

climatic data such as Ta, Tw, es, ea, and VPD 

were used as input variables for the models. 

After training and testing, they were evaluated 

using statistical indices. Results suggest that 

the performance of the models is influenced by 

the number of input variables. In most cases, 

the MLP models outperformed the GEP ones 
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for estimating Tc, and the best models 

introduced in this study were MLP7, which 

used es and ea as input variables and GEP11 

which used all the input variables. 

The results confirmed that GEP and ANN 

models could be used for irrigation scheduling. 

It is notable that, so far, there has been no 

comprehensive research on predicting leaf 

temperature using meteorological parameters. 

Choosing between GEP and ANN (MLP) 

depends on the problem context, the nature of 

the data, and the desired outcome. Neural 

networks possess strong abilities to manage 

intricate, high-dimensional data, adjust to new 

information, and reveal underlying patterns. 

However, these strengths are accompanied by 

challenges, such as the requirement for 

extensive datasets, difficulties in 

interpretability, and substantial computational 

demands.

 
Table 7. Statistical indices of various ANN models in the validation phase 

Model 
MSE 

(°C) 

RMSE 

(°C) 
R2 Model 

MSE 

(°C) 

RMSE 

(°C) 
R2 

MLP1 1.95 1.40 0.78 GEP1 1.45 1.2 0.84 

MLP2 1.79 1.34 0.88 GEP2 1.29 1.13 0.93 

MLP3 1.92 1.4 0.81 GEP3 1.78 1.33 0.82 

MLP4 5.8 2.4 0.34 GEP4 6.69 2.58 0.22 

MLP5 6.44 2.53 0.36 GEP5 7.8 2.79 0.23 

MLP6 1.14 1.07 0.94 GEP6 1.56 1.25 0.85 

MLP7 1.02 1.01 0.95 GEP7 1.3 1.15 0.91 

MLP8 1.25 1.11 0.94 GEP8 1.8 1.34 0.91 

MLP9 1.25 1.11 0.92 GEP9 1.58 1.26 0.91 

MLP10 1.1 1.05 0.93 GEP10 1.57 1.25 0.91 

MLP11 1.3 1.14 0.93 GEP11 1.54 1.24 0.92 

 

A thorough understanding and management 

of these pros and cons are essential for 

effectively utilizing neural networks across 

different applications (Khalilov et al., 2021). 

In contrast to formulations based on artificial 

neural networks (ANN), which can be overly 

complex for practical use, models derived 

from Gene Expression Programming (GEP) 

offer estimation equations that are relatively 

simple and suitable for practical design and 

even manual calculations (Kontoni et al., 

2022). 
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