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Abstract 

Predicting inflow into reservoirs is essential for their operation during floods, particularly in 

mountainous watersheds characterized by snow-rain regimes. The objective of this research is to 

evaluate the GEFSv12 re-forecast data as an input of the HEC-HMS model for forecasting floods due 

to the extreme precipitation in March/April 2019 in the reservoir of Bakhtiari dam in southwestern 

Iran. So, ensemble flood forecasting (control and ensemble members) was conducted using extracted 

precipitation and temperature data with the lead-time up to 10 days. A sequence of predictions for 

flood warnings was analyzed when 50% of the members exceeded the threshold inflows of 1000 and 

1500 m³/s. The relative volume error values for the control member and the ensemble mean for five 

days ahead were -15% and -22%, respectively. While previous studies in catchments with snow-rain 

regimes anticipated challenges in flood forecasting at mid-lead times, this research demonstrated that 

the proposed probabilistic framework could effectively issue flood warnings for events with a lead 

time of five days. To address and predict flooding at the Bakhtiari Dam with a threshold of 1500 m³/s, 

flood warnings are issued with a lead time of 5 to 8 days. 

Keywords: Ensemble Forecasting, Flood Warning, GEFSv12, Hydrological Model, Reservoir 

Operation. 

 

1. Introduction 

Many meteorological centers around the 

world apply numerical weather prediction 

(NWP) models to produce precipitation 

forecasts. In some cases, the use of numerical 

weather and climate models inevitably leads to 

inaccurate prediction of runoff (Nanditha and 

Mishra, 2021). The important role of a 

reforecast in validating and calibrating weather 

and climate model forecasts, diagnosing model 

errors, and predicting extreme or rare events 

has therefore been widely recognized (Baxter 

et al., 2014; Ou et al., 2016; Gascón et al., 

2019; Hamill et al. 2022). 

Ensemble forecasting was developed to 

study and evaluate the efficiency of 

deterministic weather forecasting systems 

globally and locally. Ensemble forecasts are 

available in the re-forecast period and can be 

input directly into hydrologic models and used 

to assess the predictability of precipitation 

events, warn and guide farmers, and manage 

reservoirs (Stellingwerf et al., 2021). Over the 

past decade, ensemble flood forecasting has 

improved significantly with the development 

of numerical weather prediction models, 

advances in high-performance computing, and 

increasing interest in the transition from 

deterministic to probabilistic decision making 

(Wu et al., 2020). As for the probabilistic 

approach, ensemble forecasts consist of 

forecast elements that can be obtained from 

perturbations in the initial conditions of the 

weather and climate forecast model, 

hydrological models, and various numerical 

weather models (Moradkhani et al., 2018; Zhu 

et al., 2019). 

An operational system that couples NWP 

and a hydrologic model at a basin scale was a 

practical strategy for predicting reservoir 
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inflow. Therefore, poor performance of the 

NWP model leads to errors in precipitation 

prediction, which in turn leads to uncertainties 

in runoff prediction (Fan et al., 2016; Nanditha 

and Mishra, 2021). Ensemble flood forecasts 

are usually based on ensemble forecasts based 

on different meteorological inputs, different 

initial conditions, multiple hydrological 

models, or a set of multiple parameters, or a 

combination of the above (Cloke and 

Pappenberger, 2009; Duan et al., 2019; 

Roundy et al., 2019). 

The climate in Iran is generally dry and 

semi-arid, but frequent floods cause significant 

damage to people and society. A series of 

major floods occurred simultaneously in 

different parts of Iran in March/April 2019, 

causing massive damage to agriculture, farms, 

and residential areas (Aminyavari et al., 2019). 

In this context, Maddah et al. (2021) studied 

the extreme precipitation event of March-April 

2019 in the Karkhe River basin in 

southwestern Iran. The results showed that the 

maximum and average values of rainfall 

predicted by the WRF model are 

underestimated and that the prediction error 

increases as the lead time increases. In general, 

they suggest that a forecast time of 78 to 102 

hours is appropriate for warning of extreme 

precipitation events in the Karkhe River basin. 

Younis et al. (2008) studied the performance 

of the European Flood Alert System (EFAS) in 

part of the Elbe River basin in the Czech 

Republic for the 2006 spring precipitation 

event. The extreme flood event, triggered by 

snowmelt, caused major damage in the Elbe 

River basin. According to the analysis, EFAS 

forecasts were able to determine the flood 

probability signal 8 to 10 days in advance. In 

another study, Thielen et al. (2009) 

investigated the performance of the European 

Flood Alert System (EFAS) with a lead time of 

3 to 10 days for international rivers in Europe. 

Delaney et al. (2020) presented ensemble 

forecast operations (EFO) as a risk-based 

approach to reservoir flood control that 

includes ensemble streamflow predictions 

(ESPs) produced by the Nevada-California 

River Forecast Center. Reservoir operations 

are modeled separately for each of the ESP 

members to predict system conditions and 

calculate the risk of reaching critical operating 

thresholds. Decisions to release reservoirs for 

predicted risk management are simulated using 

the identified risk tolerance values. The EFO 

for Endocino Lake, California, is being 

developed to assess the extent to which it can 

improve reservoir storage reliability without 

increasing downstream flood risk. 

Fan et al. (2016) used the GEFSv2 model 

from the United States National Oceanic and 

Atmospheric Administration. The researchers 

used a large-scale distributive hydrologic 

model from MGH-IPH, to produce an 

ensemble flood forecast for the Tocantins 

River basin in Brazil. The 2011/2012 

precipitation season was simulated to forecast 

flood warnings for the reservoir and to 

examine ensemble members and flood lead 

time on a daily basis. Other researchers, such 

as Siqueira et al. (2020) and Wu et al. (2020), 

studied the importance of ensemble flood 

forecasts. 

The literature search provided us with 

several studies on the use of re-forecast data 

and the production of runoff forecasts. 

However, there are fewer studies on evaluating 

and improving the forecasts in the watersheds 

of Iran. It was also found that in watersheds 

with dams, issuing flood warnings can play a 

greater role in reducing flood damage by pre-

releasing from the reservoir ahead of time. 

Nevertheless, this should be investigated in 

different geographic areas. 

This paper presents the results of ensemble 

flood forecasting based on GEFSv12 model for 

the extreme flood event in March and April 

2019 in the Bakhtiari reservoir basin in 

southwestern Iran. In addition, the efficiency 

of using ensemble flood forecasts in the 

management of Bakhtiari reservoir was 

discussed. 

 

2. Materials and Methods  

In this section, first, Bakhtiari dam basin 

was introduced. Then, the method used in the 

rainfall-runoff conceptual model of HEC-

HMS was described, followed by re-forecast 

precipitation and temperature input data of 

GEFSv12. Finally, the model evaluation 

indices were presented. 

 

2.1. Study area 

The study area was the Bakhtiari reservoir 

basin with an area of 6388 km2 in southwestern 

Iran. Bakhtiari reservoir is located 80 km away 



248                                                                               Eidipour et al. /Water Harvesting Research, 2024, 7(2):246-257 

   

from Khoramabad city. Its main purpose is 

power generation and flood control 

(Hatamkhani et al., 2021). The maximum 

elevation above sea level of the basin is 4049 

m. The Sezar and Bakhtiari rivers join about 

3.1 km downstream of the dam to form the Dez 

River. The Great Karun is formed by the 

confluence of the Karun and Dez Rivers. The 

geographic location of the Bakhtiari dam is 48˚ 

46’ 50” east longitude and 32˚ 57’ 41” north 

latitude. The Bakhtiari basin has a rain-snow 

regime. The average annual precipitation is 

about 720 mm, and the annual standard 

deviation of precipitation is 159.1 mm 

(Gheidari et al., 2011). Fig. 1 shows the 

topographic characteristics of the Bakhtiari 

reservoir basin and the locations of the 

meteorological stations. 

 

 
Fig. 1. Topographic properties of Bakhtiari dam basin and meteorological stations locations 

 

2.2. Data collection  

The Global Ensemble Forecasting System 

Version 12 (GEFSv12) data, recently 

launched, 31 years (1989-2019) of forecast 

data from the National Center for 

Environmental Prediction (NCEP) were used. 

The reforecast system is based on the NCEP 

global real-time forecast version 15.1 and uses 

the Finite Volume 3 dynamical core. The 

resolution of the forecast system is about 25 

km with 64 vertical hybrid level and with a 

temporal resolution of 6 hours, i.e., available 

for 0, 6, 12, 18, and 24 hours (Guan et al., 

2022). The newly forecast temperature and 

precipitation dataset GEFSv12 for the period 

2000-2019 is available on the website 

https://noaa-gefs-

retrospective.s3.amazonaws.com/index.html. 

The number of these forecasts outputs is not as 

much as that of the real-time forecasts. The 

initial conditions of the model are considered 

once per day according to the zero runtime. 

This model has five members, except that an 

11-member reforecast is made once per week, 

and the lead time is 35 days. A critical aspect 

of the GEFS model is that these forecasts use a 

dynamic core where only the initial conditions 

are perturbed and there are some small random 

perturbations in the forecast phase. These 

forecasts are in contrast to systems such as the 

Short-Range Ensemble Forecast (SREF), 

where different dynamic cores are used in one 

set (Saminathan et al., 2021). 
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2.3. Model setup 

In the present study, the soil moisture 

accounting (SMA) and snow melt algorithms 

(temperature index) available in HEC-HMS 

were used for continuous modeling of the 

rainfall-runoff process. According to Bennett 

(1998), the linear reservoir model was used 

along with the SMA model to calculate base 

flow, and the Clark model was used output of 

the models was used to convert excess 

precipitation to runoff (Teng et al., 2018). 

HEC-HMS consists of three elements, 

including (1) the river basin model, (2) the 

meteorological model, and (3) the control 

specifications. Flowchart of the continuous 

modeling process undertaken in the present 

study using the HEC-HMS model is shown in 

Fig. 2. The snowmelt algorithm is a part of the 

meteorological model. 

Snowmelt modeling is used to estimate 

snow water equivalent (SWE) volume and the 

timing and amount of snowmelt that affect soil 

moisture, runoff, and river flow. It is worth 

mentioning that the snowmelt algorithm 

(Temperature Index) is a key component of the 

meteorological model within the HEC-HMS. 

However, it is important to acknowledge the 

limitations of this model when applied to 

snow-affected basins with a rain-snow regime. 

For instance, the Temperature Index method 

relies on empirical temperature thresholds that 

may not accurately reflect local conditions, 

leading to potential inaccuracies in predicting 

snowmelt. Furthermore, the model does not 

account for complex interactions between 

precipitation forms, snowpack dynamics, and 

changing climatic conditions, which can 

impact the hydrological response (Gao et al., 

2023; Houghton et al., 2022). These 

considerations highlight the need for careful 

application of the HEC-HMS model in snow-

affected basins like the study area. 

HEC-HMS provides two alternatives for 

modeling snowmelt, including (1) the 

temperature index method and (2) the gridded 

temperature index method (Davtalab et al. 

2017). The river basin model is designed for 

modeling in two states (1) Continuous model 

(2) Event-based model. 

Event-based flood modeling uses a 

simulation period of several hours to several 

days, beginning before precipitation and 

ending shortly after precipitation ends. 

Continuous modeling has longer time periods, 

including dry and wet periods, ranging from 

months to years (Gyawali and Watkins 2013). 

The Soil moisture accounting (SMA) 

algorithm pattern was introduced by Leavesley 

et al. (1983) and described by Bennett (1998). 

This model introduces the basin with a series 

of storage layers. Surface storage and tree 

canopy are the first layers to fill during 

precipitation. Surface infiltration then occurs. 

The third storage layer is then the soil profile 

storage. The water that exceeds the 

aforementioned storage appears as direct 

runoff. Evapotranspiration causes some of the 

water in the soil profile to be lost, and some of 

it reaches the groundwater layers via deep 

percolation. The calibrated parameters of the 

algorithm SMA are given in Table 1. 

 
Table 1. Used values for parameters of the SMA 

model 
Parameter Calibrated value 

Soil (%) 5 

Groundwater 1(%) 20 

Groundwater 2(%) 30 

Max infiltration (mm/hr.) 2.41 

Improvision (%) 0 

Soil storage(mm) 945 

Tension storage(mm) 669 

Soil percolation (mm/hr.) 3.28 

Gw 1 storage(mm) 220 

Gw 1 percolation (mm/hr.) 1.59 

Gw 1 coefficient(hr.) 1.35 

Gw 2 storage(mm) 78.45 

Gw 2 percolation (mm/hr.) 1.09 

Gw 2 coefficient(hr.) 0.7 

 

2.4. Evaluation criteria 

The evaluation of the performance of the 

flood forecasting ensemble using the Nash-

Sutcliffe efficiency (NSE), Pearson correlation 

coefficient (PCC), root mean square error 

(RMSE), and relative volume error (RVE) is 

presented in equations 1 to 4. 

The NSE is often used to study the 

performance of hydrologic models. Nash and 

Sutcliffe (1970) defined a coefficient ranging 

from negative infinity to 1. Higher values 

indicate better efficiency. The NSE equation 

is: 

(1) 

 

 

PCC is a dimensionless index. It is the 
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the changing trends for each corresponding 

paired variables. The PCC evaluates the 

similarity of variations in two variables (Kim 

et al., 2021). The PCC coefficient equals to: 

  2/122 )()(
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Fig. 2. Flowchart of the modeling process undertaken in the current study using the HEC-HMS model. 

 

The RMSE is an index coaxial to the unit of 

measurement. The lower the RMSE value, the 

better the performance of the model. The 

RMSE can be significantly increased by a few 

large errors, which is the most critical problem 

with this test. In addition, the test does not 

distinguish between an underestimated and an 

overestimated value (Stone, 1993). RMSE is: 
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3. Results and Discussion 

The efficiency of the continuous model 

HEC-HMS (SMA) for the Bakhtiari reservoir 

basin was evaluated using the index mentioned 

in section 2-4, and the results are reported here. 

The observed and simulated discharges during 

the calibration and evaluation periods are 

shown in Fig. 3.  

SMA continuous model calibration was 

conducted over four years from 2015 to 2019, 

and the assessment was conducted over two 

years from 2019 to 2021. The NSE results for 
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the calibration and evaluation show values of 

0.81 and 0.79, and the RMSE is 93 and 30, 

respectively (Table 2). Due to the large area of 

the catchment and the temporal and spatial 

variations in precipitation and snow storage 

and karst development in the study area, these 

criteria are a good indicator of model 

performance (Davtalab et al., 2017; Razmkhah 

et al., 2016). Although the model inputs are 

lumped, the model SMA was able to correctly 

simulate the physical processes of the 

watershed. 

 

 
Fig. 3. Simulation and observation quantities of inflow (outflow) in the calibration (top) and evaluation 

(bottom) stage 

 
Table 2. Results of the evaluation criteria of the 

model for the calibration and verification steps. 
Verification Calibration Criteria 

-7 -9 RVE (%) 

0.79 0.81 NSE 

30 93 RMSE (m3/s) 

0.90 0.91 PCC 

 

The safe discharge range of the Dez River 

is between 1,000 and 1,500 m³/s based on the 

river floodplain conditions and the current 

condition of the flood control structures 

downstream of the Dez Dam. Therefore, the 

lower limit of the no-damage discharge (1,000 

m³/s) and the minimum-damage discharge 

(1,500 m³/s) were established as thresholds.  

During the March-April 2019 study period, 

a precipitation event coinciding with snowmelt 

resulted in a severe flood with peak flows of 

2600 and 2800 m3/s. The flood lasted 13 days, 

with a daily discharge of 1500 m3/s having 

been measured on 7 days. The physical 

conditions of the catchment and the 

considerable snow accumulation resulted in a 

slow decline of the hydrograph. Therefore, the 

flood generated 1570 million cubic meters of 

runoff. Fig. 4 shows the ensemble flood 

forecast results for 10 different lead times 

based on the GEFSv12 model members, 

including the control run, the four individual 

members, and the ensemble mean. 
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The heat map in Fig. 5 shows the results of 

NSE, RMSE, PCC, and RVE in 60 prediction 

sequences. Comparing the control run 

evaluation criteria values with those of the 

individual ensemble members and the 

ensemble mean, the better performance of the 

ensemble mean is evident. 

 

 
Fig. 4. Values of observed discharge and sequence of predictions for the March-April 2019 flood. Black 

lines illustrate the observed discharge. The x-axis represents time, while the y-axis shows discharge (m³/s). 

 

The criteria evaluation in the control run 

shows that 3 days ahead (3DA), the NSE, 

RMSE, PCC, and RVE values are 0.34, 540, 

0.7, and -8, respectively, which is a better 

performance compared to the other lead times. 

However, the PCC is better for 1DA, its value 

is 0.79. The evaluation of each member of the 

ensemble shows that the indices tend to be 
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different for each member. The first and third 

individual members of 6DA had RVE index 

values of -14% and -4%, respectively, which 

were better than the control member's -52%. 

Examination of the ensemble mean shows that 

the NSE, RMSE, PCC, and RVE values for 4 

days ahead (4DA) are 0.62, 442, 0.84, and -10, 

respectively, which is better than other lead 

times. However, the RVE value for 1DA has 

decreased to 6%. In general, the predicted 

volume is underestimated in most prediction 

sequences based on the RVE index. 

Nevertheless, 1DA is overestimated in all 

members except the fourth ensemble member. 

Accurate prediction of flood inflow is more 

critical to reservoir flood management than the 

shape and characteristics of the input 

hydrograph. Therefore, the RVE values show 

the model accuracy in predicting the inflow, 

which is more important for the operation of 

the reservoir.  

Studies such as Block et al. (2009), Doblas-

Reyes et al. (2005), and Gao et al. (2022) show 

better performance of the deterministic run 

compared to individual members. However, 

the results obtained for the study area showed 

that some individual members responded 

better than the control run. The results of the 

evaluation of the March-April 2019 flood 

criteria in the Bakhtiari reservoir basin showed 

that 2DA and 3DA performed better than 1DA 

for most indices. The results were in good 

agreement with studies such as Tsering et al. 

(2022) and Younis et al. (2008). 

 

 
Fig. 5. The heat map of the evaluation indices of prediction sequences 

 

The ensemble members and the ensemble 

mean are critical in defining the probabilistic 

framework to make better decisions. By using 

an ensemble flood forecast, a dam's reservoir 

can be operated more efficiently during a 

flood, significantly reducing flood damage 

(Delaney et al., 2020). All lead times 

exceeding the thresholds of 1500 and 1000 

m3/s were examined using the probabilistic 

approach in Tables 3 and 4. If at least 50% of 

the members exceeded the thresholds, it was 

considered a serious flood warning (Fan et al., 

2016). 

The results from the probabilistic table for 

exceeding the threshold of 1500 m³/s indicate 

a clear distinction in flood predictability 

between the two flood peaks. On March 26, 

during the first peak, there was no exceedance 

from 6DA to 10DA, while exceedance rates 

were significantly higher at earlier lead times 

(83% at 5DA and 100% at 4DA). This suggests 

that the early warning systems may need 

refinement for the first flood peak, as reliance 

1DA 2DA 3DA 4DA 5DA 6DA 7DA 8DA 9DA 10DA

NSE -0.07 0.25 0.34 0.33 0.00 -1.06 -0.11 -1.10 -1.59 -1.48

RMSE(cms) 737 617 580 583 713 1024 753 1034 1149 1124

PCC 0.79 0.74 0.70 0.73 0.66 0.19 0.64 0.51 0.01 0.43

RVE(%) 12 -25 -8 -19 -15 -52 -33 -55 -59 -61

NSE 0.20 -0.31 0.16 0.01 -0.12 0.22 -0.43 -1.07 -1.18 -1.86

RMSE(cms) 639 818 655 710 755 628 853 1026 1054 1206

PCC 0.81 0.57 0.72 0.57 0.78 0.70 0.62 0.26 0.43 0.31

RVE(%) 6 -15 -28 -27 -41 -14 -43 -35 -55 -67

NSE -0.56 0.58 0.14 -0.50 -0.19 0.03 -0.60 -1.32 -1.80 -1.62

RMSE(cms) 893 462 663 874 777 702 903 1086 1193 1154

PCC 0.81 0.84 0.71 0.72 0.82 0.71 0.64 0.65 0.14 0.23

RVE(%) 20 -12 -28 11 13 -32 -46 -60 -64 -61

NSE -0.61 0.43 0.50 0.03 0.03 -0.20 -1.07 -1.02 -0.99 -1.53

RMSE(cms) 906 540 506 703 703 781 1027 1015 1006 1134

PCC 0.75 0.78 0.81 0.71 0.69 0.58 0.45 0.27 0.40 0.34

RVE(%) 12 -16 -8 -10 -16 -4 -34 -15 -29 -61

NSE 0.03 0.09 0.24 0.10 0.12 -1.14 -1.76 -1.24 -1.78 -1.05

RMSE(cms) 701 775 621 676 764 1045 1185 1069 1190 1022

PCC 0.66 0.91 0.83 0.74 0.98 0.28 0.48 0.38 0.30 0.40

RVE(%) -10 -16 -32 1 -41 -46 -19 -55 -65 -52

NSE 0.04 0.43 0.40 0.62 0.31 -0.42 -0.59 -1.05 -1.40 -1.74

RMSE(cms) 701 537 551 442 594 851 900 1021 1105 1182

PCC 0.78 0.78 0.79 0.84 0.77 0.55 0.54 0.43 0.44 0.35

RVE(%) 6 -17 -21 -10 -22 -33 -40 -52 -60 -65

Days Ahead

Evaluated criteria Members

Ensemble mean

EN(04)

Control member

EN(01)

EN(02)

EN(03)



254                                                                               Eidipour et al. /Water Harvesting Research, 2024, 7(2):246-257 

   

on the monitoring at 6DA and beyond did not 

indicate an imminent risk. In contrast, during 

the second peak on April 1, exceedance was 

detected as early as 7DA (67%), reaching 

100% at 6DA, which demonstrates improved 

predictability and highlights the potential for 

better preparedness strategies during 

subsequent flood events. This finding aligns 

with previous research indicating that early-

warning systems can significantly improve 

flood management by allowing responders to 

take timely action (García et al., 2017; Kousky, 

2017). 

Moreover, the results related to the 

threshold of 1000 m³/s corroborate the efficacy 

of our warning systems, as alerts were issued 

prior to surpassing this critical level during 

both peaks. Notably, the higher percentage of 

exceedance (83%) for the second peak 

beginning at 8DA suggests that improved 

forecast accuracy may have contributed to 

earlier alerts, enhancing response 

effectiveness. This reinforces the notion 

discussed by Kousky (2017) that early 

warnings play a crucial role in flood risk 

management and community resilience. 

Overall, these findings emphasize the 

importance of continuous improvement in 

flood forecasting and warning mechanisms. 

Future studies could benefit from exploring 

advanced modeling techniques and integrating 

real-time data to further enhance the reliability 

of flood predictions. 

 
Table 3. The exceedance of the flood threshold in March-April 2019, the numerical index corresponds to the 

percentage of ensemble members exceeding the discharge threshold of 1500 m3/s (In the red area, the 

observed discharge is lower than 1500 m3/s, and in the green area it is higher than 1500 m3/s. The data 

marked with an asterisk shows the observed peak discharge). 

lead time /date event 
23 24 25 26* 27 28 29 30 31 1* 2 3 4 

March April 

10DA 0 0 0 0 17 0 0 0 0 0 0 0 0 

9DA 0 0 0 0 0 0 0 0 0 33 33 17 0 

8DA 0 0 0 0 0 0 0 0 0 33 67 33 17 

7DA 0 0 0 0 17 0 0 0 17 67 67 0 0 

6DA 0 0 0 0 17 17 0 0 0 100 100 83 0 

5DA 0 0 17 83 50 0 0 0 0 67 83 67 0 

4DA 0 0 17 100 83 33 0 0 0 67 100 33 0 

3DA 0 0 17 83 100 33 0 0 0 50 83 0 0 

2DA 0 0 17 83 100 17 0 0 0 83 83 67 0 

1DA 0 0 50 100 100 33 0 0 0 83 100 100 0 

 

Table 4. Same as Table 3 but for 1000 m3/s. 
lead time /date event 23 24 25 26* 27 28 29 30 31 1* 2 3 4 

 March April 

10DA 0 0 0 0 17 17 0 0 0 17 0 0 0 

9DA 0 0 0 0 0 0 0 0 0 33 50 33 0 

8DA 0 0 0 0 0 0 0 0 17 83 67 67 17 

7DA 0 0 0 17 33 33 0 0 67 100 83 67 0 

6DA 0 0 17 50 50 17 0 0 33 100 100 100 0 

5DA 0 0 17 100 100 0 0 0 17 100 100 100 0 

4DA 0 0 50 100 100 67 0 0 33 100 100 83 0 

3DA 0 0 50 100 100 83 0 0 17 100 100 83 0 

2DA 0 0 17 100 100 67 0 0 0 100 100 100 0 

1DA 0 0 83 100 100 100 0 0 17 100 100 100 0 

 

4. Conclusion 

The catchment area of the Bakhtiari 

reservoir is located in the high mountain zone 

of the Zagros Mountains in southwestern Iran. 

Consequently, extreme flood events are more 

likely to occur during the snowmelt season. 

The flood hydrograph in March-April 2019 

shows that the second peak was larger than the 

first peak, although precipitation was higher at 

the same time as the first peak. Despite the 

complexity of the simulation process, 

especially in catchments with snow storage, 

the parametric uncertainty of the hydrological 

and meteorological model, the continuous 

model HEC-HMS (SMA) was able to correctly 

model the precipitation and runoff process. 

The generated ensemble flood forecast 

provides useful information for the Bakhtiari 

reservoir operator to improve flood 

management. 
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The performance of ensemble flood 

forecasts based on the GEFSv12 model was 

presented for the extreme event of March-

April 2019. The results showed that although 

extreme events are always complicated, the 

use of probabilistic approaches is useful for 

decision making in flood management. With 

the proposed probabilistic framework, we 

could be notified 5-8 days before a flood event 

with discharge greater than 1500 m3/s and 6-9 

days before a flood with discharge greater than 

1000 m3/s. Although advance notification of 

reservoirs during this period has some 

limitations, especially if the floods occur at the 

end of the reservoir refilling period, it helps 

significantly in planning for preparedness and 

flood damage reduction. 
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