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Abstract 

This study presents a comprehensive analysis aimed at predicting the discharge of the Barandozchay 

River using machine learning algorithms and meteorological data from both satellite and ground 

sources over the period from 2002 to 2022. The research highlights the significance of incorporating 

snow cover data in enhancing predictive accuracy, particularly during the spring and summer seasons. 

Utilizing Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Random Forest 

(RF), the study evaluates various parameters affecting river discharge, including temperature, 

precipitation, and solar radiation. The results indicate that the Random Forest model outperforms the 

others in accuracy and generalization, while SVM demonstrates improved predictive capabilities with 

the inclusion of snow cover data. Specifically, the integration of snow cover data significantly 

enhanced the simulation accuracy of river discharge. The SVM model showed notable improvements 

in evaluation metrics, with R2 increasing from 0.64 to 0.72, MAE decreasing from 0.4 to 0.61, and 

RMSE reducing from 0.81 to 0.29 in the test data. Conversely, the RF model experienced an increase 

in error for the test data, but the correlation coefficient R2 improved from 0.85 to 0.88. The findings 

underscore the necessity of employing advanced machine learning techniques for water resource 

management, especially in regions facing water crises due to climate change. 

Keywords: Artificial Neural Networks, Barandozchay River, Random Forest, Support Vector 

Machines.  

 

1. Introduction 

Predicting river discharge is a critical aspect 

of water resource management, playing a vital 

role in supplying drinking water, agricultural 

needs, and flood control. This is especially 

relevant in countries like Iran, which face 

water crises and climatic changes, 

underscoring the need for precise predictions 

of water flows. Given that most water 

resources are influenced by factors such as 

rainfall, temperature, humidity, and snow 

cover, understanding and analyzing these 

factors is essential for forecasting river flows 

(Wang et al., 2020; Kim et al., 2021; Panahi et 

al., 2021; Nguyen et al., 2022). Additionally, 

the recent decline in lake and river water levels 

due to drought and mismanagement 

emphasizes the necessity of effective 

predictive models. The intensification of 

drought and unsustainable management of 

water resources have led to a significant 

decrease in the water level of Lake Urmia in 

northwestern Iran, bringing this ecosystem to a 

critical point of no return. 

In the context of river discharge forecasting, 

the utilization of data collected from 

meteorological stations and satellite sensors 

has increasingly gained attention. 

Meteorological data, used as inputs for 

predictive models, can encompass various 

atmospheric parameters such as rainfall, 

temperature, and solar radiation. Alongside 

these data, information regarding snow cover 

also holds special significance as a natural 
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source influencing water discharge level. 

Examining changes and management of water 

resources in lakes and rivers using diverse 

models and assessing the impacts of human 

activities and climatic changes has been the 

subject of numerous studies. Below is a 

summary of the key findings and studies that 

have been mentioned: 

Research by Hassanzadeh et al. (2012) 

revealed that 65% of the decrease in lake level 

is attributed to excessive surface water 

consumption, 25% due to dam construction, 

and 10% owing to reduced precipitation. 

Recommendations for preserving the current 

level of the lake include improved water 

resource management and agricultural 

practices. 

Shadkam et al. (2016) indicated that the 

reduction in water input to Lake Urmia from 

1960 to 2010 was influenced by climatic 

changes and the development of water 

resources. Climatic changes accounted for 

60% of the reduction in water input, while 

water resource development accounted for 

40%. Xie et al. (2016) utilized the ARMA-

GARCH model to study flow variations in the 

Yangtze River, demonstrating similarities in 

variability across nearby stations. 

Additionally, Banihabib et al. (2017) 

employed the DARIMA-NARX model, which 

significantly enhanced water flow prediction 

accuracy. Yazdani and Zolfaghari (2017) 

determined that using the JEN neural network 

model achieved greater accuracy compared to 

other models. Furthermore, the study by 

Alizade Govarchin Ghale et al. (2018) 

emphasized the substantial impact of human 

activities on the contraction of Lake Urmia. 

The results of Chaudhari et al. (2018) 

showed that human water management 

significantly decreased water flow to the lake. 

Schulz et al. (2020) also highlighted the 

negative impacts of human activities and 

climatic changes on the Lake Urmia crisis. 

Radman et al. (2022) investigated the use of 

various models, including RNN and LSTM, to 

forecast changes in Lake Urmia, pointing out 

the superior accuracy of the LSTM model 

relative to the others. In the study by 

Barbuleshcu and Zhen (2024), the ELM model 

was identified as the most effective for 

predicting discharge in the Buzau River. 

Moreover, Wei et al. (2024) demonstrated that 

the use of wavelet transforms and CNNs could 

enhance water flow predictions. 

These studies collectively illustrate the 

increasing emphasis on leveraging 

meteorological data and machine learning 

algorithms for predicting and managing water 

resources. In recent decades, machine learning 

algorithms have emerged as efficient tools for 

hydrological predictions and water flow 

simulation across various global regions. 

These algorithms are rapidly gaining traction 

due to their robust capacity for processing 

nonlinear data and their good generalization 

capabilities, especially when historical data is 

limited (Chau et al., 2005; Nayak et al., 2005; 

Awchi, 2014). This study aims to forecast the 

discharge of the Barandozchay River utilizing 

machine learning algorithms, including 

Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), and Random Forest 

(RF). 

 

2. Materials and Methods 

2.1. Study area 

The Barandozchay watershed in the West 

Azerbaijan Province is considered a strategic 

region concerning water resources. Covering 

an area of 1203 square kilometers, this 

watershed originates from the mountainous 

border between Iran and Turkey and flows into 

the Urmia Plain. The Barandozchay River is 

regarded as an essential water source in this 

region due to its supply from mountain peaks 

and favorable precipitation patterns. 

 

2.2. Data 

2.2.1. Meteorological data 

This study utilized three types of 

meteorological data:  

1. Ground-Based Data: Meteorological 

stations "Babaroud" provided parameters 

including average temperature, rainfall, 

humidity, and solar radiation. 

2. Satellite Data (LARC) program: We 

used four sets of data in this research. Two of 

data are observations from Bibakran and 

Gasemlou hydro meteorology stations. 

Locations of these stations are shown in Figure 

1. We also used two sets of data from NASA 

(LaRC) power project which produces 

meteorological data using MERRA-2 archive. 

This data is available in 0.05 decimal degree 

grids around the world. The datasets and the 
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parameters used from each set are shown in 

Table 2. For modeling snow covered area in the 

basin, 40 parameters of monthly observations 

are used from February 2000 to October 2019. 

3. Modis  Data: Snow cover extent in the 

Barandozchay watershed was extracted using 

eight-day MODIS (MOD10A2) data in HDF 

format, obtained from the National Snow and 

Ice Data Center (NSIDC). The images, 

corresponding to tile h21v05.006, were 

imported and georeferenced in ArcMap. The 

watershed boundary was delineated using 

digital elevation models (DEMs). Snow cover 

images were clipped to the watershed extent, 

and snow cover areas were calculated for a 20-

year period (2002–2022). The snow cover data 

were reloaded in ArcGIS, and raster layers 

were used to generate time series for trend 

analysis and future modeling. Monthly 

averages of snow cover extent were prepared 

for further analysis. 

 

2.2.2. Discharge data from the 

Barandozchay River 

The discharge data from the Barandozchay 

River Basin were obtained from the Babarud 

Hydrometric Station, covering the period from 

2002 to 2022, and were used as the output 

variable for the models. The location of the 

Babarud Hydrometric Station is illustrated in 

Figure 1. 

 

 
Fig. 1. Hydrometric stations and Barandoz Basin 

 

Table 1. The geographic coordinates of the 

Babarud Hydrometric station 
Latitude Longitude  

37° 24′ 00′′ 45° 14′ 00′′ Babarud 

37° 17′ 00′′ 44° 54′ 00′′ BiBakran 

 

Tables 2 and 3 present the satellite-based 

meteorological parameters and ground-based 

meteorological parameters that were analyzed 

for their correlation with the discharge data 

from the Babarud Hydrometric Station in the 

Barandozchay Watershed. Based on the 

analysis of these correlations, the selected 

parameters include temperature (maximum, 

mean, and minimum), precipitation, solar 

radiation, and snow cover data. These 

variables were chosen as they exhibited 

significant relationships with the discharge 

measurements, making them critical inputs for 

the hydrological modeling process. 

 
Table 2. Satellite meteorological parameters 

Row Parameters 
Measurement 

Units 

1 Mean Temperature °C 

2 
Maximum Mean 

Temperature 
°C 

3 
Minimum Mean 

Temperature 
°C 

4 Solar Radiation MJ/m2·day 

5 Infrared Radiation MJ/m2·day 

6 Relative Humidity % 

7 Dew Point Temperature °C 

8 Wind Speed at 2 Meters m/s 

9 Precipitation Mm 

10 Surface Pressure kPa 
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Table 3. Ground-Based meteorological 

parameters 

Row Parameters 
Measurement 

Units 

1 Mean Temperature °C 

2 
Maximum Mean 

Temperature 
°C 

3 
Minimum Mean 

Temperature 
°C 

4 Evaporation Mm 

5 Precipitation Mm 

6 Maximum Temperature °C 

7 Minimum Temperature °C 

8 
Relative Humidity at 

12:30 PM 
% 

9 
Relative Humidity at 

6:30 AM 
% 

10 
Relative Humidity at 

6:30 PM 
% 

 

In this study, discharge data, along with 

satellite-based and ground-based 

meteorological data, were collected on a 

monthly scale for the period from 2002 to 

2022. These datasets were utilized to 

investigate the impact of snow cover data on 

river discharge modeling using the R software. 

 

2.3.  Study process 

The models utilized for predicting river 

discharge included Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), and 

Random Forest (RF). Prior to employing these 

algorithms, a data preprocessing step was 

performed, which included: 

a. Data Cleaning: Removal of incomplete 

data and imputation of missing values. 

b. Data Standardization: The various 

measured parameter values were converted to 

a common scale to prevent any parameter from 

disrupting the model. 

c. Correlation Analysis: This analysis 

determined which parameters had the most 

significant impact on discharge and exhibited 

higher correlations . 

The relevant parameters studied are 

referenced in Tables 2 and 3. However, the 

main parameters used among these include 

precipitation, temperature (monthly average, 

minimum, and maximum), solar radiation, and 

snow surface data, which were extracted using 

MODIS. These parameters were evaluated 

based on the correlation analysis with 

watershed discharge using cross ACF for each 

parameter up to a 20-lag period. 

 

 

2.4. Model Evaluation Method  

The model evaluation criteria included: 

1 - R2: R2 is typically used to assess how 

well the model fits the data, and its definition 

is as follows: 

R2 = 1 −  
∑(Yi − Xi)

2

∑(Yi − Y̅)2
 (1) 

2 - RMSE: Root Mean Square Error, which 

measures the deviation of predictions from 

actual values. 

RMSE = √
∑ (Yi − Xi)2N

i

N
 (2) 

3 - MAE: Mean Absolute Error, defined as 

the average of the absolute differences 

between predicted and actual values. 

MAE =
∑ |Yi − Xi|

N
i

N
 (3) 

In the above relationships, 𝑌𝑖   and 

𝑋𝑖 represent the corresponding values of the 

observed and modeled series, respectively. 

Additionally, 𝑌̅  and  𝑋̅ denote their means.  N  

represents the number of values in the time 

series . 

 

2.5. Modeling process 

Modeling the Discharge of the 

Barandozchay River: Assessing the Influence 

of Snow Cover 

Two distinct modeling frameworks were 

developed to investigate the impact of snow 

cover on the discharge of the Barandozchay 

River. Additionally, three different parameter 

selection strategies were implemented to 

optimize the modeling process. In the first 

approach, all available parameters were 

included in the model. The influence of snow 

cover was evaluated by running the model 

twice: once with snow cover data incorporated 

and once without. This allowed for a direct 

comparison of the model’s performance with 

and without snow-related inputs. 

In the second approach, the modeling was 

conducted using a set of parameters selected 

based on prior research and empirical studies 

conducted by the researchers. This approach 

relied on expert knowledge to identify the most 

relevant parameters for the model. 

Finally, in the third approach, the Random 

Forest method was employed to select the most 

significant parameters. The model was then 

run twice: once with snow cover data included 

and once without, to assess the effect of snow 
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cover on the model’s output within this 

parameter selection framework. This multi-

scenario approach provides a comprehensive 

evaluation of the role of snow cover in the 

hydrological modeling of the Barandozchay 

River, leveraging both empirical and data-

driven methods for parameter selection. 

 

2.6. Parameter selection using the 

random forest method 

Random Forest is widely used for both 

prediction and variable selection due to its 

capacity to evaluate the relative importance of 

input variables during model construction. In 

this approach, variable importance is assessed 

based on the degree to which each variable 

reduces the impurity in the data when used to 

split nodes across the ensemble of decision 

trees. The most common measure of 

importance, known as the Mean Decrease in 

Impurity, reflects the cumulative reduction in 

variance (for regression) or classification error 

(for classification tasks) attributed to each 

variable. Following model training, variables 

are ranked according to their importance 

scores, and a selection is made by retaining 

those that exceed a defined threshold or by 

choosing the top-ranking variables.  

This process helps to identify and retain the 

most relevant predictors, thereby improving 

model interpretability, reducing 

dimensionality, and potentially enhancing 

generalization performance. In this study the 

random forest methods give us 7 parameters to 

use in models. These parameters are, Snow, 

Precipitation, four temperature parameters and 

the daily solar radiation parameter (Genuer et 

al., 2010; Hapfelmeier and Ulm, 2013; 

Behnamian et al., 2017). 

 

3. Results and Discussion 

The results obtained from modeling and 

predicting the discharge of the Barandozchay 

River, utilizing artificial intelligence and 

meteorological data, are elaborated upon in the 

following section. 

 

3.1. Data analysis 

Initially, the collected data, including 

temperature, rainfall, solar radiation, and snow 

cover parameters, were analyzed to determine 

their correlation and influence on river 

discharge. Correlation analysis revealed that 

temperature (with a three-month lag), rainfall 

(with a two-month lag), and solar radiation 

(with a three-month lag) exhibited the highest 

correlation with river discharge and were 

included as inputs for the models. Additionally, 

snow cover data, with a lag of two to three 

months, significantly impacted river discharge, 

particularly during the spring and summer 

seasons. 

 

3.2. Detailed analysis of tables and 

numerical evaluation 

3.2.1. Case 1: Using all parameters 

In this case, we trained and tested models 

using all available parameters, both with and 

without including the snow cover parameter. 

The key objective was to assess how snow 

cover influences the models' predictive 

performance. 

 
Table 4. Modeling results using all parameters 

*without* the snow cover parameter for ANN, 

SVM, and RF models 

 
ANN 

R2 RMSE MAE 

Train 0.97 0.38 0.51 

Test 0.83 0.61 0.4 

 SVM 

Train 0.86 0.69 0.26 

Test 0.82 0.55 0.38 

 Random Forrest 

Train 0.94 0.24 0.13 

Test 0.82 0.55 0.33 

 

Table 5. Modeling results using all parameters 

*with* the snow cover parameter for ANN, SVM, 

and RF models 

 
ANN 

R2 RMSE MAE 

Train 0.99 0.15 0.7 

Test 0.85 0.64 0.36 

 SVM 

Train 0.91 0.54 0.26 

Test 0.85 0.43 0.38 

 Random Forrest 

Train 0.95 0.25 0.13 

Test 0.74 0.52 0.3 

 

According to Tables 4 and 5, integrating 

snow cover into the ANN model significantly 

improved its fit to the training data, with the R² 

value rising from 0.97 to 0.99. However, in the 
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testing data, the increase in R² was only 

modest, from 0.83 to 0.85, indicating limited 

improvement in generalization. Additionally, 

while the RMSE dropped from 0.38 to 0.15 in 

the training data, it slightly increased from 

0.61 to 0.64 in the testing data, suggesting a 

risk of overfitting. The MAE showed a minor 

enhancement in the testing data, decreasing 

from 0.40 to 0.36. 

For the SVM model, the R² value in the 

training data increased from 0.86 to 0.91, yet it 

remained stable at 0.85 in the testing data. The 

RMSE improved from 0.69 to 0.54 in the 

training data and from 0.55 to 0.43 in the 

testing data, indicating a boost in predictive 

accuracy. The MAE stayed constant at 0.26 in 

the training data and 0.38 in the testing data, 

implying that snow cover did not significantly 

impact the model’s error margins. 

The Random Forest model exhibited a 

slight increase in R² from 0.94 to 0.95 in the 

training data, but the testing data showed a 

decline from 0.82 to 0.74, pointing to potential 

overfitting. The RMSE remained nearly 

unchanged in the training data (0.24 to 0.25) 

but decreased from 0.55 to 0.52 in the testing 

data, indicating a slight improvement in 

generalization. The MAE remained at 0.13 in 

the training data and decreased slightly from 

0.33 to 0.30 in the testing data. 

Overall, the inclusion of the snow cover 

parameter appears to enhance model 

performance, particularly for the ANN and 

SVM models. Although the Random Forest 

model showed some improvement in testing 

data, it also exhibited signs of overfitting. In 

conclusion, incorporating snow cover data 

proves beneficial for increasing the accuracy 

of discharge predictions. 

 

 
Fig 2. Modeling results using all parameters *with and without* the snow cover parameter for ANN, 

SVM, and RF models 

 

The bar chart in Figure 2 illustrates the 

modeling results and the impact of the snow 

cover parameter on the predictive performance 

of the ANN, SVM, and RF models. The results 

indicate that the ANN model demonstrated a 

significant improvement in predictive 

capability when including snow cover in the 

training data. Similarly, the SVM model 

experienced notable enhancements in 

predictive accuracy, particularly in terms of 

RMSE values. In contrast, although the 

Random Forest model showed a slight 

improvement in accuracy with the inclusion of 

snow cover, the decrease in R² during testing 

suggests potential overfitting.  
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Overall, the bar chart clearly depicts the 

benefits of incorporating the snow cover 

parameter compared to not using it, 

highlighting its significance in improving 

streamflow predictions. 

 

3.2.2. Case 2: Using selected parameters 

In this  case, an effort has been made to 

develop models using a selected set of 

parameters that includes various atmospheric 

variables associated with snow cover. 

  
Table 6. Modeling results using the selected 

parameters for ANN, SVM, and RF models (With 

Snow) 

 
ANN 

R2 RMSE MAE 

Train 0.96 0.17 0.11 

Test 0.8 0.7 0.4 

 SVM 

Train 0.73 0.79 0.42 

Test 0.69 0.59 0.27 

 Random Forrest 

Train 0.92 0.29 0.15 

Test 0.79 0.57 0.32 

 

In this study, the researchers trained and 

tested models using a selected set of 

parameters that included various 

meteorological and snow cover-related 

variables.  

As shown in Table 6, the ANN model 

performed well on the training data, achieving 

an R² of 0.96. However, its performance 

significantly declined when tested, with the R² 

dropping to 0.80, indicating that the model 

may be overfitting. This is further evidenced 

by an increase in RMSE from 0.17 in the 

training data to 0.70 in the testing data, and a 

rise in MAE from 0.11 to 0.40. 

In contrast, the SVM model demonstrated 

relatively stable performance, with R² values 

of 0.73 for the training data and 0.69 for the 

testing data. Nevertheless, both the RMSE 

(0.79 in training and 0.59 in testing) and MAE 

(0.42 in training and 0.27 in testing) were 

higher than those of the other models, 

indicating lower overall accuracy. 

The Random Forest model, on the other 

hand, achieved a good balance between 

training and testing performance, with R² 

values of 0.92 in the training data and 0.79 in 

the testing data. Its RMSE (0.29 in training and 

0.57 in testing) and MAE (0.15 in training and 

0.32 in testing) also showed a more balanced 

performance compared to the ANN and SVM 

models. 

The analysis based on the results presented 

in Fig 3 illustrates the performance of the 

Artificial Neural Network (ANN), Support 

Vector Machine (SVM), and Random Forest 

(RF) models when utilizing a selected set of 

atmospheric parameters related to snow cover. 

The bar chart visually emphasizes the disparity 

in model performance. The ANN model 

achieved a high training R² of 0.96 but 

demonstrated a significant decline to 0.80 on 

the testing data, indicating overfitting. This is 

further illustrated by the RMSE and MAE, 

both of which increased notably in the testing 

phase, underlining a loss of generalization. In 

contrast, the SVM model maintained relative 

stability across both datasets, but its overall 

accuracy lagged behind the other models.  

The RF model showcased a favorable 

balance, with performance metrics that 

indicate a consistent capability to generalize 

from training to testing data. Hence, the bar 

chart effectively portrays these variances, 

particularly highlighting the Random Forest 

model’s robustness. Consequently, it suggests 

that while the ANN may benefit from further 

tuning, the Random Forest model remains the 

most reliable choice among the three for 

predicting outcomes in this context. 

In summary, while the ANN model 

exhibited signs of overfitting, the Random 

Forest model offered a more consistent 

performance across both training and testing 

datasets. The SVM model had the lowest 

accuracy among the three models. Therefore, 

we recommend the Random Forest model for 

this scenario, although further tuning of the 

ANN model might enhance its performance. 

 

3.2.3. Case 3: Using parameters selected 

by the random forest method 

In this case, the parameters selected using 

the Random Forest method were utilized for 

modeling, both with and without the snow 

cover variable. The inclusion of snow cover 

improved the training performance of the ANN 

model, as indicated by an increase in R² from 

0.97 to 0.98. However, this came at the cost of 

testing performance, with R² dropping from 

0.80 to 0.77, suggesting the model is likely 
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overfitting. Additionally, the RMSE improved 

in the training data, decreasing from 0.22 to 

0.13, but increased in the testing data from 0.61 

to 0.75. Further supporting this overfitting 

scenario, the MAE also increased slightly in 

both training and testing datasets. 

 
Table 7. Modeling results using parameters 

selected by the RF method *without* the snow 

cover parameter for ANN, SVM, and RF models 

ANN 

R2 RMSE MAE 

Train 0.97 0.22 0.12 

Test 0.8 0.61 0.42 

 SVM 

Train 0.74 0.62 0.3 

Test 0.64 0.81 0.4 

 Random Forrest 

Train 0.92 0.32 0.16 

Test 0.85 0.28 0.25 

Table 8. Modeling results using parameters 

selected by the RF method *with* the snow cover 

parameter for ANN, SVM, and RF models 

ANN 

R2 RMSE MAE 

Train 0.98 0.13 0.15 

Test 0.77 0.75 0.51 

 SVM 

Train 0.78 0.78 0.42 

Test 0.72 0.72 0.29 

 Random Forrest 

Train 0.93 0.26 0.14 

Test 0.88 0.37 0.29 

 

For the SVM model, the inclusion of snow 

cover resulted in moderate improvements in 

performance for both training and testing. The 

R² increased from 0.74 to 0.78 in the training 

data and from 0.64 to 0.72 in the testing data.  

 

 
Fig 3. Modeling results using the selected parameters for ANN, SVM, and RF models 

 

The RMSE decreased in the testing data 

from 0.81 to 0.61, while the MAE reduced 

from 0.40 to 0.29, indicating better 

generalization. The Random Forest model 

showed a slight enhancement in both training 

and testing performance with the inclusion of 

snow cover. The R² improved from 0.92 to 

0.93 in the training data and from 0.85 to 0.88 

in the testing data. Nevertheless, there was a 

slight increase in the RMSE in the testing data 

(from 0.28 to 0.37), and the MAE also 

increased slightly (from 0.25 to 0.29), 

indicating minor overfitting. 

When analyzing the results of the river flow 

modeling, it was evident that while the 

inclusion of snow cover data in the Artificial 

Neural Network (ANN) improved the model’s 

fit to the training data, it also led to a decrease 

in testing performance. This highlights a 

tendency toward overfitting, suggesting that 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2

RMSE

MAE

R2

RMSE

MAE

R2

RMSE

MAE

A
N

N
S

V
M

R
an

d
o

m
F

o
rr

es
t

W
it

h
 S

n
o
w

Case 2:Using Selected Parameters

train test



The Impact of Snow Cover on River Discharge Simulation…..                                                                                       101 
 

the snow cover parameter may not be 

advantageous for the ANN model in this 

context. In contrast, the application of snow 

cover data in the Support Vector Machine 

(SVM) model significantly enhanced both 

training and testing performance, particularly 

by reducing RMSE and MAE, thereby 

indicating that the snow cover parameter helps 

the SVM model generalize better to unseen 

data. 

The Random Forest model showed 

improvements in training fit with the inclusion 

of snow cover; however, there was a slight 

increase in testing error. This suggests that 

while the model does not display severe 

overfitting, the enhancement in testing 

performance is marginal, indicating that the 

positive impact of the snow cover parameter 

may be limited. In contrast, the SVM model 

benefits the most from including snow cover, 

demonstrating significant improvement in its 

ability to generalize to unseen data. 

Comparatively, the Random Forest model 

exhibits some gains as well, but these effects 

are less pronounced. The ANN model, 

however, tends to overfit in similar scenarios, 

highlighting the need for caution when using 

this parameter. 

 

 
Fig 4. Comparison of the performance of ANN, SVM, and Random Forest models using parameters 

selected by the Random Forest method in Case 3 

 

The bar chart illustrates the modeling 

results for the ANN, SVM, and Random Forest 

models utilizing parameters selected by the 

Random Forest method, with and without the 

inclusion of the snow cover variable. The data 

highlights notable trends in model 

performance. The ANN model demonstrated 

superior training R² when including the snow 

cover (0.98) compared to without it (0.97), yet 

its testing performance decreased from 0.80 to 

0.77, indicating overfitting. In contrast, the 

SVM model benefited from snow cover, as 

evidenced by an increase in both training (from 

0.74 to 0.78) and testing (from 0.64 to 0.72) 

performance metrics, suggesting better 

generalization. The Random Forest model also 

showed slight improvements in R² with snow 

cover, although the testing error increased 

slightly (0.37), reflecting less pronounced 

benefits. Overall, the chart effectively 

encapsulates the varying influences of the 

snow cover parameter on model accuracy, with 

the SVM exhibiting the most significant 

advantages in both training and testing settings 

(Fig 4). 
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These results align with the findings of 

Immerzeel et al. (2009), who stressed the 

importance of snow cover and melt in affecting 

river discharge in the Himalayan basin. This 

study supports the positive influence of 

incorporating snow cover data when modeling 

the discharge of the Barandozchay River, 

confirming its value as a crucial parameter in 

river flow simulations. 

Moreover, Nijssen et al. (1997) employed 

the VIC-2L model to simulate river flow in the 

Columbia and Delaware basins, uncovering 

significant errors in the arid Columbia basin. 

In comparison, the Random Forest model in 

the present study outperforms the VIC-2L 

under similar arid conditions, primarily due to 

its capacity to model complex nonlinear 

relationships more effectively. Additionally, in 

the uniformly distributed precipitation and 

temperature conditions of the Delaware basin, 

the VIC-2L model achieved an acceptable 

relative error. However, the Random Forest 

model further demonstrated superior 

performance in watersheds with consistent 

hydrological conditions. 

The findings of this study underscore the 

critical role of snow cover in enhancing the 

accuracy of river discharge predictions in the 

Barandozchay River basin. Incorporating 

snow cover data improved the performance of 

both the ANN and SVM models, particularly 

during the training phase, where the ANN 

model reached an R² of 0.99. However, the 

ANN model showed signs of overfitting, as the 

testing performance only slightly improved, 

with R² rising from 0.83 to 0.85. The SVM 

model exhibited more consistent 

improvements, with increases in both training 

and testing R² values, along with a significant 

reduction in RMSE and MAE, indicating 

better generalization to unseen data. The 

Random Forest model also experienced slight 

improvements in training performance, but 

there was a minor reduction in testing 

accuracy, suggesting limited benefits from 

including snow cover. 

When using selected parameters, the ANN 

model again performed strongly during 

training but exhibited significant overfitting, 

with testing R² decreasing from 0.96 to 0.80. 

The SVM model maintained stable yet lower 

accuracy, while the Random Forest model 

delivered balanced performance, making it the 

most reliable option in this scenario. In cases 

where parameters were selected using the 

Random Forest method, incorporating snow 

cover enhanced the SVM model’s 

generalization, with R² increasing from 0.64 to 

0.72 in testing. However, the ANN model’s 

testing performance declined, further 

highlighting overfitting. The Random Forest 

model demonstrated slight improvements but 

also minor increases in testing error, 

suggesting a limited positive impact of snow 

cover. 

In summary, the SVM model gained the 

most from including snow cover, showing 

substantial improvements in its generalization 

capabilities. The Random Forest model 

displayed some enhancements, albeit less 

pronounced, while the ANN model exhibited a 

tendency to overfit, particularly when the snow 

cover parameter was included. These findings 

corroborate previous studies, such as that by 

Immerzeel et al. (2009), which emphasized the 

significance of snow cover in river discharge 

modeling, especially in snowmelt-dominated 

basins. 

 

4. Conclusion 

In conclusion, this study highlights the 

essential role of integrating satellite-derived 

snow cover data with machine learning 

techniques to improve the accuracy of river 

discharge predictions in the Barandozchay 

River basin. Including snow cover parameters 

significantly enhanced the performance of the 

models, especially during the spring and 

summer months, underscoring the importance 

of monitoring variations in snow cover for 

effective hydrological modeling. 

Among the machine learning algorithms 

utilized, the Random Forest (RF) model 

proved to be the most effective, showing high 

accuracy with low error rates. This emphasizes 

its capability to manage non-linear and 

complex datasets. Correlation analysis further 

revealed that significant parameters, including 

precipitation, temperature, and snow cover, are 

the most influential factors affecting river 

discharge. This information provides valuable 

insights that can aid in water resource 

management and forecasting. 

The findings of this research underscore the 

need for innovative and interdisciplinary 

approaches in hydrological forecasting, 
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especially in light of climate change. By 

utilizing machine learning algorithms and 

integrating meteorological and remote sensing 

data, this study presents a solid framework for 

improving water flow predictions in areas 

dominated by snowmelt. This is particularly 

crucial for regions like the Barandozchay 

River basin, which face significant challenges 

regarding water resources. Our results also 

indicate the potential of machine learning 

models, particularly RF and SVM, to deliver 

reliable and accurate predictions, thus 

facilitating better decision-making in water 

resource management. 

Future research should aim to optimize 

model parameters and investigate hybrid 

approaches that combine process-based and 

empirical models for even greater predictive 

accuracy. Moreover, the integration of 

advanced remote sensing data along with 

machine learning techniques could unveil 

promising opportunities for enhancing water 

resource management in similar basins. 

Overall, this study adds to the expanding 

knowledge on the application of machine 

learning in hydrology, laying a foundation for 

more effective planning and management of 

water resources in regions reliant on snowmelt. 

In summary, this study not only improves 

predictions of the Barandozchay River 

discharge but also demonstrates that machine 

learning algorithms combined with various 

datasets can be powerful tools for hydrological 

forecasting amidst the challenges posed by 

climate change and water resource 

management. Ultimately, these findings can 

support informed and sustainable decision-

making, optimize water resources and mitigate 

the adverse impacts of climate change. 
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