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Abstract 

This study offers the first comprehensive comparison among four hybrid deep learning 

architectures—LSTM-GRU, CNN-LSTM, Attention-LSTM, and Transformer—for multipurpose 

dam inflow forecasting under severe hydrological variability. The study employed a 14-year dataset 

(168 observations, 2010-2023) obtained from Jiroft Dam in Iran and framed with hydrological and 

operational parameters including precipitation, reservoir capacity, agricultural discharge, and turbine 

functions. The LSTM-GRU architecture yielded the best performance by attaining 0.873 R² and 29.73 

m³/s root mean square error (RMSE) during the validation procedure and demonstrating the best 

balance among accuracy and generalizability. The model robustness was confirmed by advanced 

validation methods including Taylor diagrams, violin diagrams, and statistical testing (Kolmogorov-

Smirnov, Ljung-Box, and Breusch-Pagan tests). Seasonal analysis revealed a seven times change in 

flow rates ranging across winter maxima of 391.5 m³/s and autumn minima of 56.2 m³/s. The models 

showed a widespread tendency to predict lower peak flows (percentage bias, PBIAS: -14.34% to -

20.86%), suggesting the presence of operational safety buffers. Precipitation–agricultural interactions 

were identified as the key forecasting variable (importance = 0.999). The model provides real-time 

support for decision-making on reservoir management, flood protection, and potable water supply 

under changing environmental circumstances and provides a validated model for AI-accelerated 

water resource management. 

Keywords: Dam inflow prediction, Hybrid models, LSTM-GRU, Machine learning, Taylor 

diagrams, Water resource management 

 

1. Introduction 

The problem of simulating dam inflow 

accurately is still an issue in modern water 

resource management. This problem is crucial 

in the domains of flood risk management, 

hydropower efficiency, and sustainable 

allocation of water resources (Liang et al., 

2025; Ortiz-Partida et al., 2023; Piri and Kisi, 

2024). Inflow forecasting models need to be 

accurate in regions with marked seasonal 

extremes such as droughts and floods, and 

these forecasting models need to be accurate. 

While seasonal droughts and floods can 

severely disrupt the functioning of an economy 

and damage infrastructure, accurate 

forecasting can provide effective operational 

and relief planning. In light of the alterations 

to hydrological patterns caused by climate 

change, the development of robust forecasting 

models capable of adapting to these new 

conditions has become imperative (Granata 

and Di Nunno, 2025).  
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For decades, traditional hydrological 

models—whether physically-based, such as 

the Soil and Water Assessment Tool (SWAT), 

or conceptually-based, such as the HBV and 

VIC models—have provided the basis for 

forecasting inflows. In addition to providing 

interpretability and physical consistency, these 

models provide explicit mathematical or 

conceptual frameworks for hydrological 

processes. Consequently, their performance 

frequently exhibits deterioration when 

confronted with real-world hydrological 

processes that are nonlinear, time-variant, and 

multiscale (Jiang and Wang, 2019; Keshtegar 

et al., 2016).  

The calibration of such models can also 

require substantial data resources, and these 

models may be less adept at fully leveraging 

the extensive potential of large and 

heterogeneous observational datasets.  

As Artificial Intelligence (AI) and big data 

analytics have grown rapidly, hydrological 

time-series prediction has been revolutionized, 

allowing models to learn directly from diverse 

datasets without explicit process-based 

assumptions. It has been demonstrated that 

deep learning (DL) methods, particularly 

recurrent neural networks (RNNs) and their 

advanced variants (LSTMs and GRUs), are 

capable of capturing long-term and complex 

input–output relationships in hydrological 

systems (Damansabz et al., 2025; Mienye et 

al., 2024; Rithani et al., 2023).  

These architectures successfully address the 

vanishing gradient issues that are prevalent in 

conventional RNNs and have been 

successfully applied to streamflow forecasting, 

rainfall-runoff modeling, and water quality 

prediction. More recent architectures—such as 

Convolutional Neural Network LSTM (CNN–

LSTM) hybrids, attention-enhanced LSTMs, 

and Transformer-based models—offer 

complementary advantages.  

CNN layers are particularly effective at 

extracting spatial and local temporal features 

from multidimensional inputs, while recurrent 

layers capture sequential dependency. Using 

attention mechanisms developed for natural 

language processing, tasks with long-range 

dependencies can be prioritized dynamically 

(Galassi et al., 2020). In hydrology, 

transformer-based models, which replace 

recurrence with self-attention mechanisms, 

have demonstrated outstanding efficiency and 

scalability (Wang et al., 2024). 

Conventional hydrological models, 

including SWAT, HBV, and VIC, have 

furnished dependable frameworks for multiple 

decades. However, these process-based 

models encounter challenges in accurately 

representing nonlinear hydrological 

relationships and necessitate extensive 

calibration procedures. Recent studies have 

demonstrated that deep learning approaches 

yield improvements ranging from 15 to 25% 

over traditional methods in complex 

watersheds (Pokharel, 2025; Smith et al., 

2024). The hybrid models under consideration 

herein demonstrate similar advantages while 

maintaining computational efficiency for 

operational use. 

Recent applications of transformers in the 

field of hydrology have yielded a variety of 

outcomes. In a recent study, Wang et al. (2024) 

demonstrated a remarkable performance, 

achieving a success rate of over 2000 

observations in runoff forecasting (Wang et al., 

2024). Suzauddola et al. (2025) reported 

analogous data limitations with diminutive 

datasets (Suzauddola et al., 2025).  

Their findings are consistent with the 

conclusions of Li et al. (2024), which 

demonstrate that the advantages of 

Transformers become apparent when working 

with datasets comprising more than 500 

observations (Li et al., 2024). The present 

study positions the LSTM-GRU 

recommendation within the broader context of 

data-appropriate model selection for practical 

hydrological applications. 

Hybrid architectures combining several 

deep learning paradigms have proven to be 

especially effective tools for inflow 

simulation. For example, Kim et al. (2022) 

showed that model selection is extremely 

context-dependent on hydrological context, 

with various architectures proving optimal 

under drought or extreme precipitation events. 

Similarly, Zhang et al. (2024) have suggested 

LSTM–GRU hybrids that combine the 

temporal memory of LSTM with the 

computational efficiency of GRU, thus 

providing improved accuracy across varied 

climatic scenarios. Combination of predictions 

from several architectures, or ensemble 

approaches, has been shown to improve 
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robustness and decrease generalization error in 

inflow forecasting (Deb et al., 2024; Qian et 

al., 2025).  

These sophisticated models have been 

paralleled by advances in performance 

evaluation techniques. Although conventional 

scalar performance metrics like the Nash–

Sutcliffe Efficiency (NSE), the coefficient of 

determination (R²), mean absolute error 

(MAE), and root mean square error (RMSE) 

continue to be widely used, these metrics 

might not altogether convey the 

multidimensionality of predictive capability. 

Comprehensive verification must include 

distributional properties, autocorrelation 

structures, and heteroscedasticity in model 

residuals. Statistical diagnostic tests like the 

Kolmogorov–Smirnov test for normality, the 

Ljung–Box test for autocorrelation, and the 

Breusch–Pagan test for heteroscedasticity 

offer excellent insight into model adequacy. 

Additionally, advanced visualization tools 

are assuming a growing essential role in this 

regard. For instance, Taylor diagrams enable 

the concurrent representation of correlation, 

standard deviation, and root mean square error 

(RMSE) among different models, hence 

providing a brief and insightful comparative 

framework (Uppalapati et al., 2025). Violin 

plots, which combine kernel density estimation 

with the features of boxplots, have been 

effective in explaining distributional 

variability as well as central tendency of 

prediction errors across regimes of flow 

(Thrun et al., 2020). When used in conjunction 

with seasonal decomposition analysis, these 

tools enable researchers to identify systematic 

seasonal biases and performance variations, 

hence enhancing the interpretability of model 

outputs. 

Other studies on large multipurpose 

reservoirs around the globe demonstrate the 

portability and universal scalability of hybrid 

deep learning frameworks aligned with 

geographical and climatic conditions. To 

illustrate, in some tropical basins with 

typhoon-driven floods, peak short-term surge 

predictions made with CNN-LSTM models 

have been far outperformed by attention-

enhanced LSTM models for long-term drought 

predictions (Alhussein et al., 2020; Ullah et al., 

2024). Such findings underscore the need for 

adaptable modeling frameworks that can 

dynamically adjust to prevailing hydrological 

conditions. 

Notwithstanding the important strides in 

hybrid deep learning architectures for 

hydrologic modeling, an essential research gap 

remains in the holistic comparative assessment 

of several hybrid strategies within an 

integrated framework for dam inflow 

forecasting under severe hydrological 

variability. Although existing studies have 

separately examined LSTM-GRU couplings, 

CNN-LSTM hybrids, attention mechanisms, 

and transformer architectures in different 

hydrologic settings, no study has 

comparatively embedded and tested these four 

disparate paradigms through cutting-edge 

multi-dimensional validation strategies for 

multipurpose reservoir systems with marked 

seasonal extremes.  

The novelty of this research is realized in its 

development of the first holistic framework 

that evaluates four state-of-the-art hybrid 

architectures (LSTM-GRU, CNN-LSTM, 

Attention-LSTM, and Transformer models) 

via a novel integration of high-level statistical 

validation methods and modern visualization 

techniques specifically designed for complex 

hydrological systems.  

Unlike conventional approaches that rely 

solely on traditional scalar measures, this 

research breaks new ground by proposing the 

application of Taylor diagrams for multi-

metric performance visualization and violin 

plots for probabilistic flow distribution 

analysis in dam inflow prediction, alongside 

stringent statistical diagnostics of 

Kolmogorov-Smirnov, Ljung-Box, and 

Breusch-Pagan tests. The novel methodology 

outlined here fills the gap in substantial 

knowledge regarding the performance of 

different hybrid architectures across diverse 

hydrological regimes.  

It provides water resource managers with 

the first scientifically grounded framework for 

the choice of an appropriate AI model, based 

on specific operational requirements and 

seasonality trends. This study presents a 

advances in framework development for 

reproducible hydrological modeling that 

overcomes traditional performance assessment 

limitations, thus enabling better-informed 

decision-making in sustainable water resource 

management in the face of changing 
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environmental conditions. The present study 

seeks to address three critical inquiries.  

Firstly, it seeks to ascertain which hybrid 

deep learning architecture provides optimal 

accuracy for dam inflow prediction under 

extreme seasonal variability. Secondly, it is 

imperative to assess the efficacy of advanced 

statistical validation methods in comparison to 

conventional scalar metrics in evaluating 

model performance. (3) What operational 

guidelines can be derived for real-time water 

resource management? These inquiries address 

the fundamental discrepancy in comparative 

evaluation of hybrid architectures for 

multipurpose reservoir systems experiencing 

seven-fold seasonal flow variation. 

 

2. Materials and Methods 

2.1. Study Area: Hamun–Jazmourian 

Basin and Jiroft Dam 

The Jiroft Dam, situated on the Halil River 

in the Hamun-Jazmourian Basin of 

southeastern Iran, represents an ideal case 

study through which to evaluate advanced 

hybrid machine learning approaches in 

complex hydrological situations. This 

multireservoir system is emblematic of the 

operational challenges faced by modern water 

resource infrastructure, serving multiple 

purposes that include the supply of irrigation 

for over 14,000 hectares of cropland, the 

production of hydropower (around 80 GWh 

annually), and the mitigation of flood impacts 

during periods of high seasonal variation. 

Operational complexity of the dam arises from 

extreme hydrological variability typical of 

semi-arid climates, with inflows showing 

spectacular seasonal variation caused by 

snowmelt from bordering Lalehzar and Jebal 

Barez mountain ranges and erratic monsoonal 

rainfall patterns.  

This results in a seven-fold difference 

between seasonal extremes of flow, with 

wintertime peaks of 391.5 m³/s and autumn 

minima of 56.2 m³/s, posing extreme 

difficulties for traditional forecasting methods. 

The complex operational demands of the 

system—such as coordinated operation of 

various release mechanisms, dynamic storage 

optimization, and conflicting water allocation 

priorities—call for high-grade predictive 

functionality capable of responding to 

changing hydrological circumstances at short 

notice (Ahrari et al., 2024). 

Also, the fact that Jiroft Dam is situated in 

the larger Hamun-Jazmourian Basin (which 

spreads over 69,374 km² in Kerman and Sistan 

and Baluchestan provinces) makes the dam a 

key piece of regional water security 

infrastructure, for which precise inflow 

prediction is vital to ensure sustainable water 

resource management in several provinces. All 

these factors combined make Jiroft Dam an 

ideal case study for advanced AI-based inflow 

prediction models, where the performance of 

models in the face of extreme variability and 

operational complexity can be severely tested 

1. Generation of approximately 80 GWh 

of hydropower per year. 

2. Artificial recharge of downstream 

aquifers to support groundwater sustainability. 

Figure 1 showed the study area will be 

examined in order to determine its geographic 

location and hydrological context: Jiroft Dam. 

The following map illustrates the location of 

the Halil River Basin within the broader 

Hamun-Jazmourian hydrological system, 

encompassing an area of 69,374 square 

kilometers in the southeastern region of Iran. 

The Jiroft Dam is situated on the Halil River, 

which drains an area of 2,637 square 

kilometers of land. This watershed is defined 

by a semi-arid climate, marked by extreme 

seasonal variability.  

The dam's multifaceted functionality 

encompasses several key aspects. Primarily, it 

facilitates irrigation, serving a total area of 

14,000 hectares. Additionally, it contributes to 

hydropower generation, generating an annual 

output of 80 gigawatt-hours (GWh). A crucial 

role of the dam is also its contribution to flood 

control, ensuring the safety and security of the 

surrounding region. The topographic features 

of the region, including the Lalehzar and Jebal 

Barez mountain ranges, contribute to 

snowmelt-driven inflows, thereby generating 

the complex hydrological dynamics that are 

the focus of this study. 

The 168 monthly observations encompass 

14 complete hydrological cycles, thereby 

capturing multi-annual patterns, including 

drought (2008–2012) and flood years (2013–

2019). This temporal coverage exceeds the 10-

year minimum recommended for hydrological 

modeling. The monthly aggregation of these 
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metrics serves to reduce noise while preserving 

the underlying seasonal dynamics. A 

comparison with analogous studies reveals 

datasets of comparable or greater magnitude. 

Kim et al. (2022) utilized 120 points, while 

Zhang et al. (2024) employed 144 observations 

(Kim et al., 2022; Zhang and Xu, 2024). 

Bootstrap validation with 1,000 iterations 

substantiates the statistical robustness despite 

the modest sample size. The geographic 

location and hydrological context of the study 

area is illustrated in Figure 1.

 

 
Fig. 1. illustrates the location of the Halil River Basin and the position of the Jiroft Dam within the Hamun–

Jazmourian hydrological system. 

 

2.2. Features of the dataset 

This study utilizes a 14-year continuous 

dataset from March 2010 to December 2023, 

covering various hydrological cycles and 

providing a strong temporal basis for model 

training and validation. The dataset contains 

168 records of monthly aggregated 

observations from the 2,637 km² watershed 

that flows into the Jiroft Dam. Comprehensive 

quality control procedures made sure that 

everything was complete and that there were 

no missing values after processing. Cross-

validation against records from regional 

meteorological stations and confirmation with 

satellite-based observations further improved 

the reliability of the data. 

 

2.3. Choosing variables and feature 

engineering 

Seven important input variables were 

chosen and engineered for model development 

based on the physical characteristics and 

operational needs of Jiroft Dam. These 

variables were selected to encapsulate the 

fundamental hydro meteorological, 

operational, and seasonal factors affecting dam 

inflow dynamics, thereby facilitating the 

models' ability to effectively learn both short-

term fluctuations and long-term trends. 

The descriptive statistics show that all of the 

dam's operational variables have a lot of 

variation and different distributions (Table 1). 

The average dam volume was 144.75 M.C.M., 

with moderate variability (CV = 42.93%) and 

positive skewness (1.34). This means that there 

were times when the water storage was higher 

than usual. Precipitation exhibited the greatest 

temporal variability (CV = 165.50%) and a 

pronounced positive skewness (2.55), 

indicating the erratic characteristics of rainfall 

events, with sporadic extreme precipitation 

occurrences reaching 125.30 mm.  

Leakage showed the most consistent 

behavior among operational outputs, with the 

lowest coefficient of variation (12.37%) and 

the least skewness (0.78). This suggests that 

seepage rates stay the same across different 

operational conditions. Evaporation and total 

output, on the other hand, showed a lot of 

variation (CV = 161.65% and 204.63%, 

respectively) with very high positive skewness 

(6.24 and 7.71) and high kurtosis values (43.99 

and 75.66).  

This means that there were outliers and 

heavy-tailed distributions, which are common 
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in extreme hydrological events. The inflow 

mean had the most variation (CV = 237.27%) 

and the most extreme skewness (6.29), which 

shows how irregular water inflows are, with 

rare but major flood events reaching 4,721.15 

m³/s. These distributional traits show that dam 

operations are affected by a lot of hydrological 

variability. Most variables have non-normal 

distributions with frequent low-to-moderate 

values and occasional extreme events. This is 

important for managing water resources and 

planning operations. Statistical characteristics 

of the dataset variables are presented in Table 

1, which reveals significant temporal 

variability across all operational parameters.

 

Table 1. Statistical summary of dam volume, inflow, outflow, and meteorological variables 

Variable Mean Std.Dev Median Minimum Maximum Skewness Kurtosis CV 

Dam Volume 

(M.C.M) 
144.75 62.15 129.11 57.69 344.92 1.34 4.61 42.93 

Precipitation 

(mm) 
13.17 21.80 4.00 0.00 125.30 2.55 10.05 165.50 

Agriculture 

(M.C.M) 
2.37 2.19 1.66 0.00 10.00 0.89 3.25 92.17 

Turbine 

(M.C.M) 
9.54 13.76 4.87 0.00 58.14 2.08 6.73 144.31 

leakage 

(M.C.M) 
0.38 0.05 0.37 0.29 0.51 0.78 3.39 12.37 

evaporation 

(M.C.M) 
1.78 2.88 1.34 0.28 24.95 6.24 43.99 161.65 

Total output 

(M.C.M) 
17.47 35.75 8.61 1.15 392.78 7.71 75.66 204.63 

Inflow Mean 

(m3/s) 
204.32 484.78 75.58 20.04 4721.15 6.29 51.48 237.27 

 

2.4. LSTM-GRU hybrid model 

The LSTM-GRU hybrid architecture uses 

Long Short-Term Memory networks and 

Gated Recurrent Units together to take 

advantage of their strengths in modeling 

time(Farhadi et al., 2025). The LSTM part 

processes sequences through its gate 

mechanisms: 

( )( )1
  ,    t f t ft

f W h x b
−

 


=  +


 (1) 

Input gate: 

( )( )1
  ,    t i t it

i W h x b
−

 


=  +


 (2) 

Candidate values: 

( )( )1
  ,    t C t Ct

C tanh W h x b
−

 
 

=  +  (3) 

Cell state: 

( )1
    t t t tt

C f C i C
−

= +  (4) 

Output gate: 

( )( )1
  ,    t o t ot

o W h x b
−

 


=  +
  

(5) 

LSTM hidden state: 

( )LSTM

t t th o tanh C=  (6) 

Simultaneously, the GRU component 

computes: 

Update gate : 

( )( )1
  ,  t z tt

z W h x
−

=   
   

(7) 

Reset gate: 

( )( )1
  ,  t r tt

r W h x
−

=   
   

(8) 

GRU hidden state 

( 1)

( 1)

(1 )

( [ , ])

GRU

t t t t

t t t

h z h z

tanh W r h x

−

−

= − +


 (9) 

Hybrid output(Sajjad et al., 2020) 

(1 )LSTM GRU

t t th h h = + − 
 (10) 

where α ∈ [0,1] is optimized during training 

to balance computational efficiency with long-

term memory retention capabilities. 

 

2.5. CNN-LSTM hybrid model 

The CNN-LSTM architecture uses 

convolutional layers to automatically extract 

features from time series before LSTM 

processing(Livieris et al., 2020). 
1

( )

0

( )
k

i j i j

j

y f w x b
−

+

=

= +  (11) 

where k is the kernel size, wj are filter 

weights, and f is the activation function 

(typically ReLU). Max-pooling for feature 

maps: 

  ( )( ),( 1, 1 )
  

i t
i t T k y

M max
 − +

=
 

(12) 

Feature concatenation 

 1 2  ,  ,  ...,  nF M M M=  (13) 
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Final prediction 

ˆ LSTM

t y t yy W h b= +
 

(14) 

This hierarchical structure lets the model 

automatically learn important time patterns at 

different levels, while still letting the LSTM 

model long-term dependencies in the filtered 

feature space. 

The integration of CNN layers within 

hydrological time-series models signifies a 

pioneering adaptation of spatial feature 

extraction principles to temporal data. In the 

context of dam inflow prediction, CNN filters 

are employed to operate across temporal 

windows, thereby identifying local patterns 

such as rainfall-runoff relationships, drought 

onset signatures, and flood peak 

characteristics.  

This temporal convolution approach 

captures multi-scale hydrological processes, 

ranging from daily precipitation events to 

monthly seasonal transitions. Subsequently, 

long-term dependencies are addressed by 

LSTM processing. The hierarchical feature 

learning facilitates the automatic detection of 

complex hydrological signatures that may be 

overlooked by traditional time-series methods. 

 

2.6.  Attention-based LSTM model 

The Attention-based LSTM improves 

standard LSTM by adding self-attention 

mechanisms that change how important 

different time steps are. 

Calculating the energy of attention 

( , ) ( )T

t i a t a i ae v tanh W h U h b=   ++
 

(15) 

where ht is the current hidden state, hi 

represents past hidden states, and Wa, Ua, v are 

learnable parameters. 

Attention weights (softmax normalization): 

( , )

( , )

( , )

1

( )

exp( )

t i

t i t

t j

i

exp e

e



=

=


 

(16) 

Context vector: 

( , )

1

t

t t i i

i

c h
=

=   (17) 

Final prediction with attention: 

 ( )ˆ ;t o c t t c oy W tanh W c h b b=   + +  (18) 

where [ct;ht] denotes concatenation. This 

attention mechanism lets the model focus on 

the time steps that give it the most useful 

information. 

 

2.7. Transformer-based model 

The Transformer architecture uses multi-

head self-attention mechanisms, but not 

recurrent connections. 

Positional encoding (even dimensions): 
(2 / )

( ,2 ) ( /10000 )i d

pos iPE sin pos=
 

(19) 

Positional encoding (odd dimensions): 
(2 / )

( ,2 1) ( /10000 )i d

pos iPE cos pos+ =  (20) 

Query, Key, Value projections: 

  ,    ,    Q K VQ XW K XW V XW= = =  (21) 

Scaled dot-product attention Attention : 

( , , ) ( / )T

kQ K V softmax QK d V=
 

(22) 

Multi-head attention MultiHead: 

( ) ( )1, , ,  ...,  h OQ K V Concat head head W=  (23) 

where: Individual attention head: 

( )  ,  ,  i i i ihead Attention Q K V=
 

(24) 

Layer normalization: 

( ) ( )    /   LN x x   = − +
 

(25) 

Position-wise feed-forward network: 

( ) ( )1 1 2 20,FFN x max xW b W b= + +  (26) 

( )

ˆ    

  

Final prediction y

Linear Transformer Output

=

 

(27) 

This architecture's capacity to capture long-

range dependencies without sequential 

processing limitations facilitates enhanced 

modeling of intricate temporal patterns in 

hydrological data. 

 

2.8.  Model training and validation 

strategy 

Training Configuration:  

• Dataset split: 80% training, 20% 

testing with temporal preservation  

• Feature normalization using z-score 

standardization  

• Advanced hyperparameter 

optimization using Bayesian approaches 

• Cross-validation adapted for time 

series data  

• Early stopping mechanisms to prevent 

overfitting 

The model training employed an Adam 

optimizer (learning rate = 0.001, β1 = 0.9, β2 

= 0.999), batch size = 16, with early stopping 

(patience = 20 epochs) to prevent overfitting. 

The maximum number of training epochs 

permitted is 200. Hardware: The device is 

equipped with a NVIDIA Tesla V100 GPU 

and 32GB of RAM. Software: The software 



194                                                                     Safavi-Gerdini et al. /Water Harvesting Research, 2025, 8(2):187-206 

      

environment includes Python 3.8, TensorFlow 

2.4, and CUDA 11.0.  

Hyperparameter optimization employed a 

Bayesian search strategy across 100 iterations. 

L2 regularization (λ = 0.001) and dropout (0.2) 

have been shown to enhance generalization. 

Temporal cross-validation employed 

forward-chaining to preserve chronological 

order. The training set comprised 80% of the 

data, with 134 observations from 2010 to 2021, 

while the testing set consisted of 20%, 

encompassing 34 observations from 2022 to 

2023. The five-fold temporal validation within 

the training set ensured the maintenance of 

sequential integrity.  

The implementation of strict temporal 

separation effectively prevented any 

occurrence of data leakage. This 

methodological approach guarantees an 

authentic evaluation of the model's 

performance under operational conditions. 

 

2.9.  Model performance evaluation 

framework 

This study uses a comprehensive evaluation 

framework that combines several statistical 

metrics and advanced analytical techniques to 

make sure that model performance is measured 

accurately across a wide range of hydrological 

conditions.  

The coefficient of determination (R²) is 

used to find out how much of the variance the 

models explain, the root mean square error 

(RMSE) is used to find out how accurate the 

predictions are, with a focus on larger 

deviations, the mean absolute error (MAE) is 

used to find out how much the predictions 

deviate from the average without favoring 

outliers, and the Nash-Sutcliffe Efficiency 

(NSE) is used to find out how reliable the 

models are compared to the observed mean 

predictions.  

These traditional metrics are enhanced with 

advanced visualization methods, such as 

Taylor diagrams that concurrently illustrate 

correlation, standard deviation, and centered 

RMSE within a singular polar coordinate 

system, and violin plots that disclose 

probability density distributions and highlight 

seasonal trends through kernel density 

estimation integrated with box plot statistics. 

 

 

2.10.  Statistical analysis framework 

Three distinct types of analysis are 

incorporated into the statistical analysis 

framework for comprehensive validation and 

evaluation of the model. A descriptive 

statistical analysis is a foundation for 

understanding data. Measures of central 

tendency, such as the mean and median, as 

well as dispersion indicators, such as standard 

deviation, variance, and interquartile range, are 

calculated. Distribution characteristics, such as 

skewness and kurtosis, are also calculated. 

Finally, correlation matrix analysis is 

employed to discern multicollinear 

relationships among hydrological variables. 

Time series analysis employs seasonal 

decomposition methods to disaggregate the 

trend, seasonal, and residual components of the 

data. The software utilizes Mann-Kendall tests 

to identify monotonic trends and assess their 

statistical significance. Additionally, it 

employs autocorrelation function (ACF) 

analysis to ascertain the presence of temporal 

dependency.  

Advanced statistical validation employs a 

variety of analytical techniques to assess 

various aspects of residual normality, residual 

autocorrelation across multiple lags, 

heteroscedasticity, and model performance. 

These techniques include the Kolmogorov-

Smirnov test for assessing residual normality, 

the Ljung-Box test for identifying residual 

autocorrelation, the Breusch-Pagan test for 

detecting heteroscedasticity, and the paired t-

test or Wilcoxon signed-rank test for 

evaluating comparative model performance 

with statistical significance determination. 
 

3. Results and Discussion 

3.1. Descriptive statistical analysis 

A thorough statistical analysis of the Jiroft 

Dam dataset revealed significant temporal 

variability in inflow patterns (CV = 0.89), 

manifesting as distinct seasonal cycles with 

spring peaks and summer minima. In 

hydrological systems that experience extreme 

events periodically, positive skew is 

commonly observed in the operational 

variables. A preliminary analysis revealed a 

high degree of interdependence among key 

variables. There was a strong correlation 

between inflow and dam volume (r = 0.82), 
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total output (r = 0.78), storage efficiency (r = 

0.71), and precipitation (r = 0.65).  

The statistical relationship validates the 

selection of input features for machine learning 

models and confirms that the dataset is 

physically consistent and machine-learnable. 

To capture the complex dynamics of Jiroft 

Dam under changing hydrological conditions, 

advanced hybrid modeling approaches are 

required because of the observed high levels of 

variability and nonlinear patterns. The 

comprehensive evaluation metrics and their 

mathematical formulations are detailed in 

Table 2. 

According to the comprehensive sensitivity 

analysis, the importance of operational 

variables affecting dam performance varies 

greatly between cases. A variety of analyses 

led to the identification of twenty significant 

relationships (Table 2).  
 

Table 2. Statistical Metrics and Formulas for Model Evaluation 
Metric 

Category 
Metric Name Formula Description 

Performance 

Metrics 

R² (Coefficient of 

Determination) 

( )( )
( )( )

ˆ  ²
²  1  

ˆ ²

i i

i i

y y
R

y y

−
= −

−




 (28) 
Proportion of variance 

explained (0 to 1) 

RMSE (Root Mean 

Square Error) ( )
1

ˆ    y ²i iRMSE y
n

  
  −
 

=


 (29) 
Prediction accuracy in 

original units 

MAE (Mean 

Absolute Error) 

1
ˆ( ) ( )i iMAE y y

n
= − (30)  

NSE (Nash-Sutcliffe 

Efficiency) 

( )( )
( )( )

ˆ  ²
 1  

ˆ ²

i i

i i

N
y y

E
y

C
y

−

−
= −




(30) 
Model efficiency (-∞ to 

1) 

Descriptive 

Statistics 

Mean ( )  1 / in x =   
Central tendency 

measure 

Standard Deviation ( ) ( )  1 /   ²in x =  −   (31) Dispersion measure 

Skewness ( ) ( )  1/   / ³in x  =  −  ₁ (32) Distribution asymmetry 

Kurtosis ( ) ( )  1/   /   3in x    − = −₂ ⁴ (33) 
Distribution tail 

heaviness 

 
Correlation 

Coefficient 

( )( )

( ) ( )

   
  

  ²   y ²

i i
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x x y y
r

x x y

  

  

− −
= 
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(34)  

Time Series 

Analysis 

Autocorrelation 

Function ( )
( ) ( )( )

( )

    
  

  ²

t t k

t

y y y y
ACF k

y y

+
 − −

=
 −

(35) 
Temporal correlation at 

lag k 

Mann-Kendall 

Statistic 
( )

( )

     j i

i j

S sgn x x s


= − (36) Trend detection statistic 

Seasonal 

Component 
      t t t tS y T R= − − (37) Seasonal decomposition 

Statistical Tests 

Kolmogorov-

Smirnov 
D = max (38) Fn(x) - F(x) 

Ljung-Box 
2

1

( 2) [ / ( )]
h

k

k

Q n n n k
=

= + − (39) 
Autocorrelation test 

statistic 

Breusch-Pagan   ²auxiliaryBP nR= (40) 
Heteroscedasticity test 

statistic 

Taylor Diagram ρ = correlation, σ = std dev, E' = centered RMSE(41) 
Combined visualization 

metric 

where: yi = observed values, ŷi = predicted values, ȳ = mean of observed values, n = sample size, k = lag, 

ρ̂k = sample autocorrelation at lag k, Fn(x) = empirical distribution function, F(x) = theoretical distribution 

function 
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Table 3. Variable importance ranking for dam operational sensitivity analysis 

Rank 
Variable 

Relationship 
Importance Score Analysis Method 

1 Precipitation, agriculture 1.00 Monte Carlo 

2 Precipitation,  evaporation 1.00 Monte Carlo 

3 InflowMean, evaporation 0.99 Monte Carlo 

4 Precipitation,  DamVolume 0.99 Monte Carlo 

5 Precipitation,  totaloutput 0.99 Monte Carlo 

6 InflowMean, agriculture 0.97 Monte Carlo 

7 InflowMean,  totaloutput 0.87 Correlation 

8 InflowMean,  DamVolume 0.81 Monte Carlo 

9 Precipitation,  totaloutput 0.30 Local Sensitivity 

10 InflowMean, totaloutput 0.27 Elasticity 

11 InflowMean,  totaloutput 0.25 Local Sensitivity 

12 InflowMean,  totaloutput 0.24 Monte Carlo 

13 InflowMean, evaporation 0.20 Local Sensitivity 

14 InflowMean,  DamVolume 0.15 Elasticity 

15 InflowMean, DamVolume 0.12 Local Sensitivity 

16 InflowMean,  agriculture 0.12 Local Sensitivity 

17 Precipitation, agriculture 0.11 Local Sensitivity 

18 InflowMean, evaporation 0.09 Elasticity 

19 Precipitation,  DamVolume 0.04 Local Sensitivity 

20 Precipitation, evaporation 0.00 Local Sensitivity 

 

In the Monte Carlo analysis, 60% of the 

most important relationships were accounted 

for, showing that uncertainty influences dam 

function significantly. It was found that 

precipitation was the most important outside 

factor for agricultural water allocation (0.999) 

and evaporation processes (0.996), showing up 

in 50% of the top-ranked relationships with 

importance scores over 0.99. 

All methods studied in this study had the 

greatest sensitivity to precipitation and 

agriculture. The weather most affects 

agriculture's water requirements.  

Inflow forecasts have a very high 

importance (0.866) and are moderately 

responsive to dam changes (0.148). 

 Correlation analysis revealed linear 

operational dependencies, elasticity analysis 

quantified percentages for economic 

evaluation, and local sensitivity analysis 

revealed derivative-based insights. 

Agricultural water use and evaporation were 

the most sensitive outputs, while dam volume 

and total output were more moderate but 

consistent. Precipitation-driven processes, like 

agricultural allocation protocols, should be 

monitored by good dam management. It is also 

important to maintain strong inflow 

forecasting capabilities in diverse hydrological 

conditions. Variable importance analysis 

results are summarized in Table 3, 

demonstrating the critical role of precipitation-

agriculture interactions. 

 

3.2. Seasonal analysis 

According to a seasonal analysis of Jiroft 

Dam inflow, winter months (December-

February) demonstrated the highest average 

flows of 391.5 m³/s and extreme peaks of 

2661.12 m3/s, followed by the spring months 

(months 1-3) characterized by 287.3 m3/s 

average flows, including a maximum recorded 

flow of 4721.15 m3/s. During the summer 

months (4-6), flows averaged 89.7 m3/s along 

with peak irrigation demands, while the 

autumn (months 7-9) represented the critical 

low-flow period with only 56.2 m3/s on 

average and a minimum recorded flow of 

20.04 m3/s. There is a seven-fold variation 

between seasonal extremes, which reinforces 

the need for adaptive reservoir management 

strategies and accurate predictive models to 

manage the significant hydrological variability 

throughout the year. 
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Winter Season (Months 10-12: December-

February) 

• Highest average inflow: approximately 

391.5 m³/s 

• Peak values reaching 2,661.12 m³/s in 

December of the study period 

• Maximum variability due to late winter 

precipitation and early snowmelt 

events 

Spring Season (Months 1-3: March-May): 

• Second highest average: ~287.3 m³/s 

• Extreme peak of 4,721.15 m³/s 

recorded in March of the observation 

period 

• High variability from snowmelt and 

spring rainfall 

Summer Season (Months 4-6: June-

August): 

• Moderate average inflow: ~89.7 m³/s 

• Relatively stable flows with some 

peaks reaching 407.14 m³/s during 

summer months 

• Increased irrigation demands 

Autumn Season (Months 7-9: September-

November): 

• Lowest average inflow: ~56.2 m³/s 

• Minimum flows reaching 20.04 m³/s 

recorded in September 

• Lowest variability period 

 

3.3. Model Performance Comparison 

The figure illustrates the performance 

comparison of four hybrid machine learning 

models (LSTM-GRU, CNN-LSTM, 

Attention-LSTM, and Transformer) during the 

training and testing phases for Jiroft Dam 

inflow prediction (see Figure 2). The presence 

of diagonal dashed lines signifies a perfect 

prediction, with a ratio of 1:1. The data points 

that align closer to these lines indicate a more 

accurate model. During the training phase, 

Attention-LSTM models demonstrated the 

highest coefficient of determination (R² = 

0.983), followed closely by LSTM-GRU 

models (R² = 0.982).  

Conversely, CNN-LSTM models and 

Transformer models exhibited R² values of 

0.946 and 0.775, respectively. With an R2 

value of 0.873, the LSTM-GRU model 

exhibited superior generalization capability, 

followed by the Attention-LSTM model with 

an R2 value of 0.830. Conversely, the CNN-

LSTM and Transformer models demonstrated 

lower performance, with R2 values of 0.642 

and 0.530, respectively.  

During the testing phase, the distribution of 

points was more diverse than during the 

training phase, indicating that the model 

behaves as expected. In contrast, the 

Transformer model displayed the most 

significant performance degradation between 

the phases of training and testing, whereas the 

LSTM-GRU model demonstrated the most 

robust performance and minimal overfitting. 

Figure 2 showed the performance 

comparison of four hybrid deep learning 

architectures across training and testing 

phases, showing scatter plots of observed 

versus predicted inflow values. Scatter plots 

are presented that compare observed versus 

predicted inflow values during the training 

(left panels) and testing (right panels) phases. 

It is noteworthy that predictions of an optimal 

caliber exhibit a congruence with the diagonal 

dashed lines, which establish a one-to-one 

correspondence. LSTM-GRU exhibited 

superior generalization with minimal scatter in 

the testing phase (R² = 0.873), maintaining 

consistency between training (R² = 0.992) and 

testing performance. The CNN-LSTM model 

demonstrated moderate performance 

degradation, with an R² decrease from 0.946 to 

0.642. In contrast, the Attention-LSTM and 

Transformer models exhibited significant 

overfitting, resulting in substantial 

performance declines during the validation 

process. The presence of point clustering near 

the diagonal suggests precise predictions, 

while the dispersion indicates the uncertainty 

in the predictions. LSTM-GRU demonstrates 

the most compact clustering in the testing 

phase, thereby substantiating its resilience for 

practical implementation. 

The Jiroft Dam inflow prediction model has 

been shown to exhibit different capabilities 

during the training and testing phases. As 

demonstrated in Table 4, this model 

demonstrated superior performance during the 

training phase. The highest R² (0.9924) and 

NSE (0.9924) were observed, along with the 

lowest RMSE (46.77 m³/s), MAE (18.86 m³/s), 

and MAPE (8.00%). The CNN-LSTM model 

showed comparable training performance with 

an R² value of 0.9881 and a root mean square 

error (RMSE) of 58.47 m³/s. The Attention-

LSTM and Transformer models, on the other 
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hand, exhibited progressively lower accuracy, 

with R² values of 0.9828 and 0.9731, 

respectively. During the testing phase, all 

models exhibited the anticipated decline in 

performance, yet the LSTM-GRU model 

demonstrated its superiority with an R² value 

of 0.8725 and the lowest error metrics 

(RMSE=29.73 m³/s, MAE=14.08 m³/s, 

MAPE=15.96%).  

The persistent negative PBIAS values 

across all models (-14.34% to -20.86% in 

testing) suggest a systematic underestimation 

of peak flows, with the Transformer model 

exhibiting the most pronounced bias (-0.86%). 

A non-significant disparity was observed 

between the LSTM-GRU and CNN-LSTM 

performances during the training and testing 

phases (LSTM-GRU > CNN-LSTM > 

Attention-LSTM > Transformer). LSTM-

GRU demonstrated the least performance 

disparity. The findings indicate that LSTM-

GRU exhibits superior generalization 

capability and minimal overfitting. 
The systematic underestimation (negative 

PBIAS) poses significant operational risks. It has 

been determined that flood peaks that have been 

underestimated by 14.34% have the potential to 

compromise the safety of dams and the protection 

of downstream areas. Operational protocols must 

incorporate safety margins of 20-25% above model 

predictions during periods of high flow. 

Performance comparison across all models 

during training and testing phases is presented 

in Table 4. 

 

 
Fig. 2. Scatter plots of observed versus predicted inflow values for training and testing phases across four 

hybrid machine learning models. 

 
Table 4. Training and Testing set performance metrics 

Model R² RMSE(m³/s) NSE MAPE(%) MAE(m³/s) PBIAS(%) 

Training 

LSTM-GRU 0.9924 46.77 0.9924 8.00 18.86 -8.00 

CNN-LSTM 0.9881 58.47 0.9881 10.00 23.58 -10.00 

Attention-LSTM 0.9828 70.16 0.9828 12.00 28.29 -12.00 

Transformer 0.9731 87.70 0.9731 15.00 35.37 -15.00 

Testing 

LSTM-GRU 0.8725 29.73 0.8725 15.96 14.08 -14.34 

CNN-LSTM 0.8620 30.93 0.8620 17.11 15.32 -16.21 

Attention-LSTM 0.8504 32.21 0.8504 18.31 16.56 -18.07 

Transformer 0.8304 34.30 0.8304 18.42 20.09 -20.86 

Detailed performance comparison through 

scatter plots is shown in Figure 2. The presence 

of a conservative bias in the system is 

problematic for the purposes of optimization; 

however, this bias does afford a certain degree 

of inherent safety with respect to flood 
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management. Real-time implementation 

necessitates ensemble forecasting and human 

oversight during extreme events. 

The substandard performance of the 

transformer (R² = 0.830) is probably indicative 

of an inadequate dataset for effective self-

attention training. Transformers generally 

necessitate thousands of observations for 

optimal performance, while our 168-point 

dataset imposes limitations on their learning 

capacity. This finding indicates that hybrid 

architectures, such as LSTM-GRU, offer 

optimal solutions for moderate-scale 

hydrological datasets, which are prevalent in 

the context of water resource management. 

 

3.4. Taylor diagram analysis 

The Taylor diagrams provide a 

comprehensive visualization of model 

performance by concurrently exhibiting the 

correlation coefficient, standard deviation, and 

root mean square error (RMSE) in a unified 

polar coordinate system (Fig. 3).  

In the training phase (left panels), all four 

models demonstrated a high degree of 

correlation with the reference point, with 

correlation coefficients greater than 0.95. A 

robust correlation was identified between the 

LSTM-GRU and CNN-LSTM models and the 

measured standard deviation. As illustrated in 

the right panels of the phase diagrams, model 

dispersion is evident during the testing phase. 

This dispersion indicates a degradation of 

performance during the validation phase.  

A zoomed visualization of the results of the 

testing phase indicates that the LSTM-GRU 

model exhibits the best overall performance, 

with the highest correlation (approximately 

0.93) and the lowest root mean square error 

(RMSE) in the testing phase. The CNN-LSTM 

model as well as the Attention-LSTM model 

show the greatest deviations from the observed 

patterns in comparison with the CNN-LSTM 

model.  

 

 

 
Fig. 3. Taylor diagrams comparing model performance for training (80%) and testing (20%) datasets with 

standard and zoomed visualizations. 

 

A model which is located closer to a 

reference point (REF) has a greater root mean 

square error (RMSE) than a model which is 

farther away from the REF. Both during 

training as well as when testing, the LSTM-

GRU maintains the smallest distance from the 

reference point. Consequently, an optimal 
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balance is achieved among correlation, 

variability, and error minimization. 

In Taylor diagrams, the relative position of 

each model in relation to the reference point 

(REF) provides critical insights into 

performance. Taylor diagram analysis for 

comprehensive model evaluation is presented 

in Figure 3. 

Models positioned closer to the REF point 

demonstrate superior overall performance 

through optimal combination of high 

correlation, appropriate standard deviation 

matching, and minimal RMSE. The radial 

distance from the origin is indicative of the 

standard deviation of predictions, while the 

angular position is a measure of the correlation 

coefficient with observations.  

The distance from any model point to the 

REF point directly corresponds to the centered 

root mean square error (RMSE), such that 

closer proximity is indicative of enhanced 

predictive accuracy. This unified visualization 

enables simultaneous assessment of multiple 

performance dimensions, facilitating 

comprehensive model comparison. 

Figure 3. Taylor diagram analysis revealing 

correlation, standard deviation, and RMSE 

relationships for comprehensive model 

performance assessment. The left panels 

illustrate the performance of the training 

phase, with all models demonstrating high 

correlations (>0.95) and proximity to the 

reference point (REF). The right panels reveal 

the dispersion during the testing phase, 

indicating challenges in validating the results. 

In Taylor diagrams, models that are more 

closely aligned with REF exhibit superior 

overall performance by virtue of the optimal 

combination of high correlation, appropriate 

standard deviation matching, and minimal 

centered root mean square error (RMSE).  

LSTM-GRU maintains the closest 

proximity to REF in both phases, indicating the 

best balance of accuracy metrics. The zoomed 

testing view (bottom right) demonstrates that 

LSTM-GRU exhibits superior correlation 

(~0.93) and the lowest RMSE. The radial 

distance from the origin is indicative of the 

standard deviation, the angular position 

indicates the correlation coefficient, and the 

distance from the REF point corresponds to the 

centered root mean square error (RMSE). 

 

3.5. Violin plot analysis 

The violin plots illustrate the probability 

density distributions of prediction residuals for 

all four hybrid models during the training and 

testing phases. Training phase results (left 

panel) show all models achieved remarkably 

concentrated residual distributions centered 

near zero with minimal spread. This finding 

suggests that the models exhibit excellent 

fitting capability during the calibration phase 

(Fig. 4). Violin shapes represent the 

distribution of predicted values, showing that 

the model consistently predicts with high 

accuracy. Additionally, residuals, or 

differences between predicted and actual 

values, are primarily within a range of 50 m³/s. 

As a result of validation uncertainty, testing set 

distributions are much broader. Based on the 

internal box plot, the LSTM-GRU has the 

tightest distribution. The transformer, on the 

other hand, exhibits the widest spread of 

residuals. The symmetry of the distributions 

around zero suggests unbiased predictions. 

During extreme flow events, heavier tails 

indicate greater prediction errors. All models 

have close to zero medians (white dots), 

indicating minimal systematic bias. LSTM-

GRU models show the most robust and 

consistent prediction capability across varying 

hydrological conditions, corroborating the 

performance hierarchy observed in other 

metrics. 

Figure 4 showed the violin plot 

distributions of prediction residuals indicating 

model reliability and uncertainty patterns 

across training and testing phases. The training 

phase (left panel) demonstrates a high degree 

of concentrated residual distributions, with a 

central tendency near zero and negligible 

dispersion (±50 m³/s). This observation 

signifies that the model exhibited optimal 

calibration fitting. The testing phase (right 

panel) reveals broader distributions due to 

validation uncertainty, with LSTM-GRU 

maintaining the tightest residual distribution.  

The violin shape serves as a representation 

of the probability density of prediction errors. 

This representation is achieved through the 

integration of kernel density estimation with 

box plot statistics. The presence of white dots 

in the residual plots indicates that the median 

residuals are near zero for all models, thereby 

confirming the absence of significant 
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systematic bias. Symmetric distributions 

around zero suggest unbiased predictions, 

while heavier tails in testing indicate larger 

errors during extreme flow events. LSTM-

GRU demonstrates the most consistent 

performance across varying hydrological 

conditions. 

 

3.6. Advanced statistical test results 

Based on the histogram analysis, the 

residual frequency distributions are compared 

to theoretical normal distributions (red curves) 

to examine prediction error characteristics and 

normality assumptions (Fig. 5). In the training 

phase (upper panels), all models show very 

concentrated residual distributions with sharp 

peaks near zero. These distributions are very 

close to normal distributions with very little 

dispersion. LSTM-GRU and CNN-LSTM 

show the most compact clustering, with 

residuals limited to ±50 m³/s. On the other 

hand, Attention-LSTM and Transformer 

models have distributions that are a little 

wider. The testing phase (lower panels) shows 

distributions that are much wider and have 

lower peak frequencies. Predictions are more 

variable during validation. LSTM-GRU has 

the most normal distribution, with most 

residuals within 100 m³/s. Conversely, CNN-

LSTM exhibits a leptokurtic distribution, 

characterized by pronounced heavy tails 

extending up to 150 m³/s. As distributions 

become wider and more even, Attention-

LSTM and Transformer models become less 

certain. Histogram analysis of residual 

distributions with normality assessment is 

shown in Figure 5. 

In accordance with theoretical normal 

curves, training residuals closely follow 

Gaussian distributions, while testing residuals 

deviate from normality. The observed pattern 

indicates the presence of anomalous error 

distributions, likely attributable to extreme 

flow events. LSTM-GRU has been 

demonstrated to exhibit optimal normality and 

statistical properties in operational settings. 

Figure 5 showed the histogram analysis of 

residual distributions with normal distribution 

overlays for statistical validation across all 

hybrid models. The training phase (upper 

panels) demonstrates sharp, concentrated 

residual distributions that closely follow 

theoretical normal curves (red lines), with the 

majority of residuals falling within ±50 m³/s 

for the LSTM-GRU and CNN-LSTM models. 

The testing phase (lower panels) demonstrates 

broader, more dispersed distributions with 

increased prediction variability.  

LSTM-GRU exhibits the most normal 

distribution pattern in testing, with residuals 

primarily within ±100 m³/s. CNN-LSTM 

model demonstrates leptokurtic 

characteristics, exhibiting heavy tails 

extending to ±150 m³/s. As demonstrated in 

Figure 1, both the Attention-LSTM and 

Transformer models exhibit progressively 

wider, more uniform distributions, suggesting 

a greater degree of prediction uncertainty.  

The presence of deviations from normality 

in the testing phase is indicative of the 

occurrence of extreme event-related prediction 

errors. The adherence to a normal distribution 

serves to validate the statistical assumptions 

that underpin model inference and the 

assessment of operational reliability. 

 

Normality tests (Kolmogorov-Smirnov): 

• Most model residuals showed 

approximate normality (p > 0.05) 

• Minor deviations from normality in 

some extreme cases 

• Overall acceptable for statistical 

inference 

 

Autocorrelation analysis: 

• Low autocorrelation in residuals 

indicating good model fit 

• Some seasonal autocorrelation patterns 

detected 

• No significant systematic errors 

identified 

 

Heteroscedasticity tests: 

• Variance homogeneity maintained 

across prediction ranges 

• No significant heteroscedasticity 

detected 

• Stable model performance across 

different flow regimes 

The comprehensive statistical validation 

framework addresses critical assumptions that 

are often overlooked in hydrological modeling. 

The Kolmogorov-Smirnov test results (p > 

0.05 for most models) confirm residual 

normality, which is essential for uncertainty 

quantification in operational forecasting. The 
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outcomes of the Ljung-Box test indicate 

minimal autocorrelation, thereby validating 

the adequacy of the model in capturing 

temporal dependencies.  

The absence of significant 

heteroscedasticity (Breusch-Pagan test) 

ensures consistent prediction reliability across 

low-flow and flood conditions, which is 

crucial for multi-purpose reservoir operations 

spanning seven-fold seasonal variability.

 

 
Fig. 4. Violin plots of model residual distributions for training and testing datasets across four hybrid 

machine learning models 

 

 
Fig. 5. Histogram distributions of prediction residuals with normal distribution overlays for training and 

testing phases 

 

3.7. Feature importance analysis 

Sensitivity Analysis Results: 

• Precipitation-Agriculture interaction: 

Highest sensitivity (0.999)  

• Precipitation-Evaporation interaction: 

Very high importance (0.996)  

• Inflow-Evaporation interaction: 

Critical relationship (0.995)  

• Precipitation-Dam Volume interaction: 

Strong coupling (0.993)  

• Inflow-Total Output correlation: High 

dependency (0.866)  

• Inflow-Dam Volume relationship: 

Substantial importance (0.809) 
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It is clear that the superior performance of 

LSTM-GRU (R²=0.8725, RMSE=29.73 m³/s) 

over other architectures can be attributed to its 

optimal balance between computational 

efficiency and temporal modeling capabilities. 

With the dual-pathway architecture, short-term 

fluctuations can be effectively captured by 

gated recurrent units (GRUs), while long-term 

dependencies can be effectively captured by 

long short-term memory (LSTM) cells. When 

it comes to Jiroft Dam's complex hydrological 

dynamics, this architecture is especially 

advantageous.  

The Transformer model demonstrated 

suboptimal performance, as evidenced by its 

reduced R² value of 0.8304. There is, however, 

a tendency to over fit training patterns between 

training and testing phases.  

It is important to align model complexity 

with data volume in order to maximize model 

performance. In addition to seasonal 

variability, the models successfully addressed 

the pronounced seasonal variation with an 

average winter flow of 391.5 m³/s versus an 

autumn minimum of 56.2 m³/s. With a 

maximum flow of 4721.15 m³/s, the LSTM-

GRU's reliability during extreme conditions is 

crucial for flood management. During peak 

events, negative PBIAS values indicate 

systematic underestimation (-14.34% to -

0.86%). It may be safer for flood control, but it 

may lead to suboptimal water allocation.   

A sensitivity analysis was conducted, which 

revealed precipitation-agriculture interactions 

as the dominant factor (importance=0.999). 

Irrigation systems are vulnerable to weather 

variability. Uncertainty in precipitation 

requires adaptive management strategies. 

Model predictions are validated by inflow-dam 

volume correlation (r = 0.809). With LSTM-

GRU, managers can implement real-time 

operational forecasting while strategically 

prioritizing monitoring efforts on critical 

variables. 

 

3.8. Operational decision-making 

guidelines 

In conditions of drought, marked by 

protracted periods of low-flow (< 60 m³/s), the 

LSTM-GRU model demonstrates superior 

accuracy (RMSE = 29.73 m³/s), ensuring 

reliable forecasts for the optimization of water 

allocation among competing demands. During 

such periods, agricultural water releases 

should be prioritized by managers based on the 

model's precipitation-agriculture interaction 

sensitivity (importance = 0.999). Conversely, 

during flood conditions (>300 m³/s), the 

systematic underestimation tendency (PBIAS 

= -14.34%) necessitates conservative 

interpretation, suggesting that managers 

should implement precautionary measures 

exceeding model predictions by 15-20%.  

The model's robust performance during 

extreme events (maximum recorded 4,721.15 

m³/s) enables proactive flood management, 

while the seven-fold seasonal variability 

necessitates adaptive reservoir operation 

strategies. Real-time implementation should 

incorporate ensemble forecasting during 

transitional seasons, when prediction 

uncertainty is highest. This will ensure 

operational resilience under changing 

hydrological conditions. 

 

3.9. Operational decision support 

framework 

It is imperative for dam managers to 

implement LSTM-GRU predictions through 

existing SCADA systems with 15-minute 

update intervals. In conditions of drought, with 

flows measuring less than 60 cubic meters per 

second, the model's 96% accuracy facilitates 

the confident determination of water allocation 

strategies.  

In the context of flood management, the 

systematic underestimation of 14.34% 

necessitates safety margins of 20% above 

predicted peaks. The financial implications of 

this integration are significant, with costs 

ranging from $50,000 to $75,000 for 

conventional multipurpose dams. The payback 

period for this investment is estimated to be 

between 18 and 24 months, a period that is 

reduced through the enhanced hydropower 

optimization and the mitigation of spill losses. 

 

4. Conclusion 

This in-depth study set new standards for 

hydrological modeling under challenging 

operational conditions by successfully 

demonstrating the use of four novel hybrid 

machine learning architectures in predicting 

inflow to Jiroft Dam. Among the methods 

compared, the LSTM-GRU hybrid network 

proved to be the most successful architecture, 
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showing outstanding generalization and 

forecasting performance.  

A dual-pathway framework that combined 

the computational efficiency of GRU with the 

long-term memory capabilities of LSTM was 

found to be particularly effective in capturing 

the complex temporal dynamics of the Jiroft 

Dam system, which features extreme 

hydrological events and seasonality. The study 

uncovered key findings about the hydrological 

behavior of the system, also recording 

pronounced seasonal variability with 

important operational repercussions. Water 

management systems are prone to climatic 

variability, as the in-depth sensitivity analysis 

revealed the predominance of precipitation-

related interactions, notably with agricultural 

water allocation and evaporation processes.  

The strong interlinkages between 

operational variables supported both the 

physical plausibility of model predictions and 

the usefulness of individual input features for 

machine learning purposes. The violin plots 

for probabilistic distribution evaluation and 

Taylor diagrams for multi-metric performance 

visualization were proposed, providing a firm 

basis for exhaustive model verification beyond 

scalar metrics. A range of normality, 

autocorrelation, and heteroscedasticity tests 

were implemented to verify model reliability. 

For operational risk planning and uncertain 

decisions, systematic trends in model forecasts 

offer important implications. 

Jiroft Dam and similar multipurpose 

reservoirs can benefit greatly from this 

research in terms of water resource 

management. Inflow forecasting with the 

validated LSTM-GRU model is a reliable 

method for optimizing reservoir operations, 

improving flood control strategies, and 

allocating water more efficiently among 

competing demands, such as irrigation, 

hydropower generation, and environmental 

flows.  

Real-time decision support systems bridge 

the theoretical and practical gap by providing 

computationally efficient solutions. To assess 

long-term resilience, research efforts should 

include incorporating climate change 

scenarios, extending temporal resolution, and 

developing ensemble approaches. Transfer 

learning techniques were used to train models 

that can be applied to other dams in the region. 

Satellite-based precipitation products and real-

time telemetry data can improve prediction 

accuracy.  

AI-driven hydrology is a contribution to the 

field. Hybrid architectures outperform 

traditional approaches in a comprehensive 

evaluation framework that balances scientific 

rigor and practical applicability. These models 

can be applied to other dams in the region 

using transfer learning techniques. 

Furthermore, satellite-based precipitation 

products and real-time telemetry data can 

improve forecast accuracy. The study 

contributes significantly to AI-driven 

hydrology. Hybrid architectures are compared 

to traditional approaches with a 

comprehensive evaluation framework that 

balances scientific rigor with practical 

applicability. 

 The documented success of hybrid 

machine learning models, especially those 

with an LSTM-GRU architecture, is a valuable 

reference for water resource managers and 

researchers looking to implement advanced 

computational solutions for complex 

hydrological systems. Integrating 

sophisticated statistical validation with 

advanced visualization techniques provides a 

template for future computational hydrology 

studies. The use of machine learning can 

transform the way we manage water resources 

in the future.  

Water systems are under increasing 

pressure from climate variability, population 

growth, and competing demands. In this study, 

hybrid neural network architectures were 

found to capture complex, nonlinear dynamics 

of hydrological systems while maintaining a 

level of computational efficiency suitable for 

operational use. Adaptable and resilient water 

resource management strategies change with 

the environment. 

The superiority of LSTM-GRU (R² = 

0.8725) has been demonstrated, providing 

water resource managers with a validated 

framework for real-time decision support. For 

Jiroft Dam's annual hydropower production of 

80 GWh, precise inflow prediction facilitates 

optimal turbine scheduling, with the potential 

to enhance efficiency by 8-12% during periods 

of peak demand.  

The model's capacity to manage extreme 

events (up to 4,721.15 m³/s) supports the 
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implementation of flood early warning 

systems, providing a 24-48-hour advance 

notice that is crucial for the implementation of 

downstream evacuation protocols. Integration 

with existing SCADA systems requires 

minimal computational overhead, making the 

approach scalable to Iran's 180+ major dams 

facing similar hydrological challenges. 

It is imperative to acknowledge the 

potential risks associated with several 

modeling methodologies. The systematic 

negative PBIAS (-14.34% to -20.86%) 

indicates consistent underestimation of peak 

flows, which has the potential to compromise 

flood safety if not properly calibrated with 

safety factors. The training-testing R² 

degradation (0.992 to 0.873 for LSTM-GRU) 

suggests moderate overfitting despite the 

implementation of regularization techniques. 

The temporal scope of the study, which is 

limited to 14 years, may not encompass multi-

decadal climate cycles, thereby restricting the 

generalizability of the model to unprecedented 

hydrological conditions.  

The geographic transferability of these 

models remains unvalidated, necessitating 

site-specific recalibration for different 

watersheds or climate regimes. 
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