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Abstract

This study offers the first comprehensive comparison among four hybrid deep learning
architectures—LSTM-GRU, CNN-LSTM, Attention-LSTM, and Transformer—for multipurpose
dam inflow forecasting under severe hydrological variability. The study employed a 14-year dataset
(168 observations, 2010-2023) obtained from Jiroft Dam in Iran and framed with hydrological and
operational parameters including precipitation, reservoir capacity, agricultural discharge, and turbine
functions. The LSTM-GRU architecture yielded the best performance by attaining 0.873 R? and 29.73
m?®/s root mean square error (RMSE) during the validation procedure and demonstrating the best
balance among accuracy and generalizability. The model robustness was confirmed by advanced
validation methods including Taylor diagrams, violin diagrams, and statistical testing (Kolmogorov-
Smirnov, Ljung-Box, and Breusch-Pagan tests). Seasonal analysis revealed a seven times change in
flow rates ranging across winter maxima of 391.5 m?/s and autumn minima of 56.2 m?/s. The models
showed a widespread tendency to predict lower peak flows (percentage bias, PBIAS: -14.34% to -
20.86%), suggesting the presence of operational safety buffers. Precipitation—agricultural interactions
were identified as the key forecasting variable (importance = 0.999). The model provides real-time
support for decision-making on reservoir management, flood protection, and potable water supply
under changing environmental circumstances and provides a validated model for Al-accelerated
water resource management.

Keywords: Dam inflow prediction, Hybrid models, LSTM-GRU, Machine learning, Taylor
diagrams, Water resource management

1. Introduction these forecasting models need to be accurate.

The problem of simulating dam inflow
accurately is still an issue in modern water
resource management. This problem is crucial
in the domains of flood risk management,
hydropower efficiency, and sustainable
allocation of water resources (Liang et al.,
2025; Ortiz-Partida et al., 2023; Piri and Kisi,
2024). Inflow forecasting models need to be
accurate in regions with marked seasonal
extremes such as droughts and floods, and

While seasonal droughts and floods can
severely disrupt the functioning of an economy
and  damage  infrastructure,  accurate
forecasting can provide effective operational
and relief planning. In light of the alterations
to hydrological patterns caused by climate
change, the development of robust forecasting
models capable of adapting to these new
conditions has become imperative (Granata
and Di Nunno, 2025).
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For decades, traditional hydrological
models—whether physically-based, such as
the Soil and Water Assessment Tool (SWAT),
or conceptually-based, such as the HBV and
VIC models—have provided the basis for
forecasting inflows. In addition to providing
interpretability and physical consistency, these
models provide explicit mathematical or
conceptual frameworks for hydrological
processes. Consequently, their performance
frequently  exhibits  deterioration = when
confronted with real-world hydrological
processes that are nonlinear, time-variant, and
multiscale (Jiang and Wang, 2019; Keshtegar
etal., 2016).

The calibration of such models can also
require substantial data resources, and these
models may be less adept at fully leveraging
the extensive potential of large and
heterogeneous observational datasets.

As Artificial Intelligence (Al) and big data
analytics have grown rapidly, hydrological
time-series prediction has been revolutionized,
allowing models to learn directly from diverse
datasets without explicit process-based
assumptions. It has been demonstrated that
deep learning (DL) methods, particularly
recurrent neural networks (RNNs) and their
advanced variants (LSTMs and GRUs), are
capable of capturing long-term and complex
input—output relationships in hydrological
systems (Damansabz et al., 2025; Mienye et
al., 2024; Rithani et al., 2023).

These architectures successfully address the
vanishing gradient issues that are prevalent in
conventional RNNs and have been
successfully applied to streamflow forecasting,
rainfall-runoff modeling, and water quality
prediction. More recent architectures—such as
Convolutional Neural Network LSTM (CNN-—
LSTM) hybrids, attention-enhanced LSTMs,
and Transformer-based ~ models—offer
complementary advantages.

CNN layers are particularly effective at
extracting spatial and local temporal features
from multidimensional inputs, while recurrent
layers capture sequential dependency. Using
attention mechanisms developed for natural
language processing, tasks with long-range
dependencies can be prioritized dynamically
(Galassi et al., 2020). In hydrology,
transformer-based models, which replace
recurrence with self-attention mechanisms,

have demonstrated outstanding efficiency and
scalability (Wang et al., 2024).

Conventional hydrological models,
including SWAT, HBV, and VIC, have
furnished dependable frameworks for multiple
decades. However, these process-based
models encounter challenges in accurately
representing nonlinear hydrological
relationships and necessitate extensive
calibration procedures. Recent studies have
demonstrated that deep learning approaches
yield improvements ranging from 15 to 25%
over traditional methods in complex
watersheds (Pokharel, 2025; Smith et al.,
2024). The hybrid models under consideration
herein demonstrate similar advantages while
maintaining computational efficiency for
operational use.

Recent applications of transformers in the
field of hydrology have yielded a variety of
outcomes. In a recent study, Wang et al. (2024)
demonstrated a remarkable performance,
achieving a success rate of over 2000
observations in runoff forecasting (Wang et al.,
2024). Suzauddola et al. (2025) reported
analogous data limitations with diminutive
datasets (Suzauddola et al., 2025).

Their findings are consistent with the
conclusions of Li et al. (2024), which
demonstrate  that the advantages of
Transformers become apparent when working
with datasets comprising more than 500
observations (Li et al.,, 2024). The present
study positions the LSTM-GRU
recommendation within the broader context of
data-appropriate model selection for practical
hydrological applications.

Hybrid architectures combining several
deep learning paradigms have proven to be
especially  effective tools for inflow
simulation. For example, Kim et al. (2022)
showed that model selection is extremely
context-dependent on hydrological context,
with various architectures proving optimal
under drought or extreme precipitation events.
Similarly, Zhang et al. (2024) have suggested
LSTM-GRU hybrids that combine the
temporal memory of LSTM with the
computational efficiency of GRU, thus
providing improved accuracy across varied
climatic scenarios. Combination of predictions
from several architectures, or ensemble
approaches, has been shown to improve
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robustness and decrease generalization error in
inflow forecasting (Deb et al., 2024; Qian et
al., 2025).

These sophisticated models have been
paralleled by advances in performance
evaluation techniques. Although conventional
scalar performance metrics like the Nash—
Sutcliffe Efficiency (NSE), the coefficient of
determination (R?), mean absolute error
(MAE), and root mean square error (RMSE)
continue to be widely used, these metrics
might not  altogether  convey  the
multidimensionality of predictive capability.
Comprehensive verification must include
distributional ~ properties,  autocorrelation
structures, and heteroscedasticity in model
residuals. Statistical diagnostic tests like the
Kolmogorov—Smirnov test for normality, the
Ljung-Box test for autocorrelation, and the
Breusch—Pagan test for heteroscedasticity
offer excellent insight into model adequacy.

Additionally, advanced visualization tools
are assuming a growing essential role in this
regard. For instance, Taylor diagrams enable
the concurrent representation of correlation,
standard deviation, and root mean square error
(RMSE) among different models, hence
providing a brief and insightful comparative
framework (Uppalapati et al., 2025). Violin
plots, which combine kernel density estimation
with the features of boxplots, have been
effective  in  explaining  distributional
variability as well as central tendency of
prediction errors across regimes of flow
(Thrun et al., 2020). When used in conjunction
with seasonal decomposition analysis, these
tools enable researchers to identify systematic
seasonal biases and performance variations,
hence enhancing the interpretability of model
outputs.

Other studies on large multipurpose
reservoirs around the globe demonstrate the
portability and universal scalability of hybrid
deep learning frameworks aligned with
geographical and climatic conditions. To
illustrate, in some tropical basins with
typhoon-driven floods, peak short-term surge
predictions made with CNN-LSTM models
have been far outperformed by attention-
enhanced LSTM models for long-term drought
predictions (Alhussein et al., 2020; Ullah et al.,
2024). Such findings underscore the need for
adaptable modeling frameworks that can

dynamically adjust to prevailing hydrological
conditions.

Notwithstanding the important strides in
hybrid deep learning architectures for
hydrologic modeling, an essential research gap
remains in the holistic comparative assessment
of several hybrid strategies within an
integrated framework for dam inflow
forecasting under severe hydrological
variability. Although existing studies have
separately examined LSTM-GRU couplings,
CNN-LSTM hybrids, attention mechanisms,
and transformer architectures in different
hydrologic  settings, no study has
comparatively embedded and tested these four
disparate paradigms through cutting-edge
multi-dimensional validation strategies for
multipurpose reservoir systems with marked
seasonal extremes.

The novelty of this research is realized in its
development of the first holistic framework
that evaluates four state-of-the-art hybrid
architectures (LSTM-GRU, CNN-LSTM,
Attention-LSTM, and Transformer models)
via a novel integration of high-level statistical
validation methods and modern visualization
techniques specifically designed for complex
hydrological systems.

Unlike conventional approaches that rely
solely on traditional scalar measures, this
research breaks new ground by proposing the
application of Taylor diagrams for multi-
metric performance visualization and violin
plots for probabilistic flow distribution
analysis in dam inflow prediction, alongside
stringent statistical diagnostics of
Kolmogorov-Smirnov,  Ljung-Box, and
Breusch-Pagan tests. The novel methodology
outlined here fills the gap in substantial
knowledge regarding the performance of
different hybrid architectures across diverse
hydrological regimes.

It provides water resource managers with
the first scientifically grounded framework for
the choice of an appropriate AI model, based
on specific operational requirements and
seasonality trends. This study presents a
advances in framework development for
reproducible hydrological modeling that
overcomes traditional performance assessment
limitations, thus enabling better-informed
decision-making in sustainable water resource
management in the face of changing
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environmental conditions. The present study
seeks to address three critical inquiries.

Firstly, it seeks to ascertain which hybrid
deep learning architecture provides optimal
accuracy for dam inflow prediction under
extreme seasonal variability. Secondly, it is
imperative to assess the efficacy of advanced
statistical validation methods in comparison to
conventional scalar metrics in evaluating
model performance. (3) What operational
guidelines can be derived for real-time water
resource management? These inquiries address
the fundamental discrepancy in comparative
evaluation of hybrid architectures for
multipurpose reservoir systems experiencing
seven-fold seasonal flow variation.

2. Materials and Methods

2.1. Study Area: Hamun-Jazmourian
Basin and Jiroft Dam

The Jiroft Dam, situated on the Halil River
in the Hamun-Jazmourian Basin of
southeastern Iran, represents an ideal case
study through which to evaluate advanced
hybrid machine learning approaches in
complex hydrological situations.  This
multireservoir system is emblematic of the
operational challenges faced by modern water
resource infrastructure, serving multiple
purposes that include the supply of irrigation
for over 14,000 hectares of cropland, the
production of hydropower (around 80 GWh
annually), and the mitigation of flood impacts
during periods of high seasonal variation.
Operational complexity of the dam arises from
extreme hydrological variability typical of
semi-arid climates, with inflows showing
spectacular seasonal variation caused by
snowmelt from bordering Lalehzar and Jebal
Barez mountain ranges and erratic monsoonal
rainfall patterns.

This results in a seven-fold difference
between seasonal extremes of flow, with
wintertime peaks of 391.5 m’/s and autumn
minima of 56.2 m?s, posing extreme
difficulties for traditional forecasting methods.
The complex operational demands of the
system—such as coordinated operation of
various release mechanisms, dynamic storage
optimization, and conflicting water allocation
priorities—call for high-grade predictive
functionality capable of responding to

changing hydrological circumstances at short
notice (Ahrari et al., 2024).

Also, the fact that Jiroft Dam is situated in
the larger Hamun-Jazmourian Basin (which
spreads over 69,374 km? in Kerman and Sistan
and Baluchestan provinces) makes the dam a
key piece of regional water security
infrastructure, for which precise inflow
prediction is vital to ensure sustainable water
resource management in several provinces. All
these factors combined make Jiroft Dam an
ideal case study for advanced Al-based inflow
prediction models, where the performance of
models in the face of extreme variability and
operational complexity can be severely tested

1. Generation of approximately 80 GWh
of hydropower per year.

2. Arttificial recharge of downstream
aquifers to support groundwater sustainability.

Figure 1 showed the study area will be
examined in order to determine its geographic
location and hydrological context: Jiroft Dam.
The following map illustrates the location of
the Halil River Basin within the broader
Hamun-Jazmourian  hydrological — system,
encompassing an area of 69,374 square
kilometers in the southeastern region of Iran.
The Jiroft Dam is situated on the Halil River,
which drains an area of 2,637 square
kilometers of land. This watershed is defined
by a semi-arid climate, marked by extreme
seasonal variability.

The dam's multifaceted functionality
encompasses several key aspects. Primarily, it
facilitates irrigation, serving a total area of
14,000 hectares. Additionally, it contributes to
hydropower generation, generating an annual
output of 80 gigawatt-hours (GWh). A crucial
role of the dam is also its contribution to flood
control, ensuring the safety and security of the
surrounding region. The topographic features
of the region, including the Lalehzar and Jebal
Barez mountain ranges, contribute to
snowmelt-driven inflows, thereby generating
the complex hydrological dynamics that are
the focus of this study.

The 168 monthly observations encompass
14 complete hydrological cycles, thereby
capturing multi-annual patterns, including
drought (2008-2012) and flood years (2013—
2019). This temporal coverage exceeds the 10-
year minimum recommended for hydrological
modeling. The monthly aggregation of these



Comparative Analysis of Hybrid Deep Learning Models for

191

metrics serves to reduce noise while preserving
the underlying seasonal dynamics. A
comparison with analogous studies reveals
datasets of comparable or greater magnitude.
Kim et al. (2022) utilized 120 points, while
Zhang et al. (2024) employed 144 observations
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(Kim et al., 2022; Zhang and Xu, 2024).
Bootstrap validation with 1,000 iterations
substantiates the statistical robustness despite
the modest sample size. The geographic
location and hydrological context of the study
area is illustrated in Figure 1.
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Fig. 1. illustrates the location of the Halil River Basin and the position of the Jiroft Dam within the Hamun—
Jazmourian hydrological system.

2.2. Features of the dataset

This study utilizes a 14-year continuous
dataset from March 2010 to December 2023,
covering various hydrological cycles and
providing a strong temporal basis for model
training and validation. The dataset contains
168 records of monthly aggregated
observations from the 2,637 km? watershed
that flows into the Jiroft Dam. Comprehensive
quality control procedures made sure that
everything was complete and that there were
no missing values after processing. Cross-
validation against records from regional
meteorological stations and confirmation with
satellite-based observations further improved
the reliability of the data.

2.3. Choosing variables and feature
engineering

Seven important input variables were
chosen and engineered for model development
based on the physical characteristics and
operational needs of Jiroft Dam. These
variables were selected to encapsulate the
fundamental hydro meteorological,
operational, and seasonal factors affecting dam
inflow dynamics, thereby facilitating the

models' ability to effectively learn both short-
term fluctuations and long-term trends.

The descriptive statistics show that all of the
dam's operational variables have a lot of
variation and different distributions (Table 1).
The average dam volume was 144.75 M.C.M.,
with moderate variability (CV = 42.93%) and
positive skewness (1.34). This means that there
were times when the water storage was higher
than usual. Precipitation exhibited the greatest
temporal variability (CV = 165.50%) and a
pronounced  positive  skewness  (2.55),
indicating the erratic characteristics of rainfall
events, with sporadic extreme precipitation
occurrences reaching 125.30 mm.

Leakage showed the most consistent
behavior among operational outputs, with the
lowest coefficient of variation (12.37%) and
the least skewness (0.78). This suggests that
seepage rates stay the same across different
operational conditions. Evaporation and total
output, on the other hand, showed a lot of
variation (CV = 161.65% and 204.63%,
respectively) with very high positive skewness
(6.24 and 7.71) and high kurtosis values (43.99
and 75.66).

This means that there were outliers and
heavy-tailed distributions, which are common
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in extreme hydrological events. The inflow
mean had the most variation (CV = 237.27%)
and the most extreme skewness (6.29), which
shows how irregular water inflows are, with
rare but major flood events reaching 4,721.15
m?/s. These distributional traits show that dam
operations are affected by a lot of hydrological
variability. Most variables have non-normal

distributions with frequent low-to-moderate
values and occasional extreme events. This is
important for managing water resources and
planning operations. Statistical characteristics
of the dataset variables are presented in Table
I, which reveals significant temporal
variability across all operational parameters.

Table 1. Statistical summary of dam volume, inflow, outflow, and meteorological variables

Variable Mean Std.Dev Median Minimum Maximum Skewness Kurtosis Cv
Dam Volume
(MLC.M) 144.75 62.15 129.11 57.69 344.92 1.34 4.61 42.93
Precipitation 13.17 21.80 4.00 0.00 125.30 2.55 10.05 165.50
(mm)
Agriculture
(MLC.M) 237 2.19 1.66 0.00 10.00 0.89 3.25 92.17
Turbine
(M.C.M) 9.54 13.76 4.87 0.00 58.14 2.08 6.73 144.31
leakage
(M.C.M) 0.38 0.05 0.37 0.29 0.51 0.78 3.39 12.37
evaporation
(MLC.M) 1.78 2.88 1.34 0.28 24.95 6.24 43.99 161.65
Total output
(M.C.M) 17.47 3575 8.61 1.15 39278 7.71 75.66 204.63
I““;’ljlggean 20432 48478 75.58 20.04 4721.15 6.29 51.48 237.27
2.4. LSTM-GRU hybrid model
yoric moce no= G(Wrx[h(;_l)’ 'xt:|) (8)
The LSTM-GRU hybrid architecture uses _
Long Short-Term Memory networks and GRU hidden state
Gated Recurrent Units together to take h ==z ,)h,, +z,
advantage of their strengths in modeling tanh @ x[rh, - .x.]) 9)
time(Farhadi et al., 2025). The LSTM part . ceheT
processes  sequences through its gate Hybrid output(Sajjad et al., 2020)
mechanisms: b =axh*™ +(1-a)xh™ (10)
[ = oW x| h x| +b. 1 where a € [0,1] is optimized during training
t f (t-1)> f ( ) . . .
to balance computational efficiency with long-
Input gate: term memory retention capabilities.
i = O'(VK x[h(H), xt} + b,.) (2)
Candid lues: 2.5. CNN-LSTM hybrid model
~ andidate values: The CNN-LSTM architecture  uses
C = tanh(ch[h(,_l), xtJ + bc) (3) convolutional layers to automatically extract
) features from time series before LSTM
Cell state: processing(Livieris et al., 2020)
Ct = ftC(z—l) + itCt (4) k=1 N .
Output gate: Vi = f(Z;, W; XX, ;) +D) (11)
=
0, =0 (W)X[h(tfl)’ xz} + bo) (5) where k is the kernel size, w;j are filter
LSTM hidden state: weights, and f is the actiyation function
K™ = o tanh(C,) 6) &};plsgally ReLU). Max-pooling for feature
Simultaneously, the GRU component ]\/}) — max
computes: i e[+ 3, (12)
Update gate : Feature concatenation
7 = o Wx[ v ) ™ F o= (M, My, oy M,] (13)

Reset gate:
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Final prediction
P =W, xh™ +b, (14)

This hierarchical structure lets the model
automatically learn important time patterns at
different levels, while still letting the LSTM
model long-term dependencies in the filtered
feature space.

The integration of CNN layers within
hydrological time-series models signifies a
pioneering adaptation of spatial feature
extraction principles to temporal data. In the
context of dam inflow prediction, CNN filters
are employed to operate across temporal
windows, thereby identifying local patterns
such as rainfall-runoff relationships, drought
onset  signatures, and flood peak
characteristics.

This temporal convolution approach
captures multi-scale hydrological processes,
ranging from daily precipitation events to
monthly seasonal transitions. Subsequently,
long-term dependencies are addressed by
LSTM processing. The hierarchical feature
learning facilitates the automatic detection of
complex hydrological signatures that may be
overlooked by traditional time-series methods.

2.6. Attention-based LSTM model
The Attention-based LSTM improves
standard LSTM by adding self-attention
mechanisms that change how important
different time steps are.
Calculating the energy of attention
e,y =V xtanh(W,xh +U,xh +b,) (15)

where h; is the current hidden state, h;
represents past hidden states, and Wa, U,, v are
learnable parameters.

Attention weights (softmax normalization):

. exp(e(z,i))
a(’»i) ¢ (16)
Z exp(e;, ;)
i=1
Context vector:
t
¢, = 2,0, %h, (17)
i=1

Final prediction with attention:
¥, =W, xtanh (W x[c,;h,|+b,)+b, (18)

where [c;h] denotes concatenation. This
attention mechanism lets the model focus on
the time steps that give it the most useful
information.

2.7. Transformer-based model

The Transformer architecture uses multi-
head self-attention mechanisms, but not
recurrent connections.

Positional encoding (even dimensions):

PE(pOS,Zi) = sin(pos / 10000(2’”)) (19)
Positional encoding (odd dimensions):
PE,,,, 511, = cos(pos /10000 (20)

Query, Key, Value projections:
Q=XW,, K =XW,, V =XW, (21)
Scaled dot-product attention Attention :
(O,K.V) = softmax(OK" | \Jd, )V (22)

Multi-head attention MultiHead:
(Q,K,V ) =Concat (headl, ..y head )WO (23)

where: Individual attention head:

head, = Attention(Ql., K., K) (24)
Layer normalization:
IN(x) = y(x —p)/o + B (25)

Position-wise feed-forward network:
FFN (x ) =max (O,x W,+b, )W2 +b, (26)
Final prediction y = 27)
Linear (T ransformer Output)

This architecture's capacity to capture long-
range dependencies without sequential
processing limitations facilitates enhanced
modeling of intricate temporal patterns in
hydrological data.

2.8. Model training and validation
strategy

Training Configuration:

e Dataset split: 80% training, 20%
testing with temporal preservation

e Feature normalization using z-score
standardization

e Advanced hyperparameter
optimization using Bayesian approaches

e C(Cross-validation adapted for time
series data

e Early stopping mechanisms to prevent
overfitting

The model training employed an Adam
optimizer (learning rate = 0.001, 1 = 0.9, B2
=0.999), batch size = 16, with early stopping
(patience = 20 epochs) to prevent overfitting.
The maximum number of training epochs
permitted is 200. Hardware: The device is
equipped with a NVIDIA Tesla V100 GPU
and 32GB of RAM. Software: The software
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environment includes Python 3.8, TensorFlow
2.4, and CUDA 11.0.

Hyperparameter optimization employed a
Bayesian search strategy across 100 iterations.
L2 regularization (A =0.001) and dropout (0.2)
have been shown to enhance generalization.

Temporal  cross-validation  employed
forward-chaining to preserve chronological
order. The training set comprised 80% of the
data, with 134 observations from 2010 to 2021,
while the testing set consisted of 20%,
encompassing 34 observations from 2022 to
2023. The five-fold temporal validation within
the training set ensured the maintenance of
sequential integrity.

The implementation of strict temporal
separation  effectively = prevented  any
occurrence  of  data  leakage.  This
methodological approach guarantees an
authentic  evaluation of the model's
performance under operational conditions.

2.9. Model performance evaluation
framework

This study uses a comprehensive evaluation
framework that combines several statistical
metrics and advanced analytical techniques to
make sure that model performance is measured
accurately across a wide range of hydrological
conditions.

The coefficient of determination (R?) is
used to find out how much of the variance the
models explain, the root mean square error
(RMSE) is used to find out how accurate the
predictions are, with a focus on larger
deviations, the mean absolute error (MAE) is
used to find out how much the predictions
deviate from the average without favoring
outliers, and the Nash-Sutcliffe Efficiency
(NSE) is used to find out how reliable the
models are compared to the observed mean
predictions.

These traditional metrics are enhanced with
advanced visualization methods, such as
Taylor diagrams that concurrently illustrate
correlation, standard deviation, and centered
RMSE within a singular polar coordinate
system, and violin plots that disclose
probability density distributions and highlight
seasonal trends through kernel density
estimation integrated with box plot statistics.

2.10. Statistical analysis framework

Three distinct types of analysis are
incorporated into the statistical analysis
framework for comprehensive validation and
evaluation of the model. A descriptive
statistical analysis is a foundation for
understanding data. Measures of central
tendency, such as the mean and median, as
well as dispersion indicators, such as standard
deviation, variance, and interquartile range, are
calculated. Distribution characteristics, such as
skewness and kurtosis, are also calculated.
Finally, correlation matrix analysis is
employed  to discern  multicollinear
relationships among hydrological variables.

Time series analysis employs seasonal
decomposition methods to disaggregate the
trend, seasonal, and residual components of the
data. The software utilizes Mann-Kendall tests
to identify monotonic trends and assess their
statistical ~ significance.  Additionally, it
employs autocorrelation function (ACF)
analysis to ascertain the presence of temporal
dependency.

Advanced statistical validation employs a
variety of analytical techniques to assess
various aspects of residual normality, residual
autocorrelation  across  multiple  lags,
heteroscedasticity, and model performance.
These techniques include the Kolmogorov-
Smirnov test for assessing residual normality,
the Ljung-Box test for identifying residual
autocorrelation, the Breusch-Pagan test for
detecting heteroscedasticity, and the paired t-
test or Wilcoxon signed-rank test for
evaluating comparative model performance
with statistical significance determination.

3. Results and Discussion

3.1. Descriptive statistical analysis

A thorough statistical analysis of the Jiroft
Dam dataset revealed significant temporal
variability in inflow patterns (CV = 0.89),
manifesting as distinct seasonal cycles with
spring peaks and summer minima. In
hydrological systems that experience extreme
events periodically, positive skew s
commonly observed in the operational
variables. A preliminary analysis revealed a
high degree of interdependence among key
variables. There was a strong correlation
between inflow and dam volume (r = 0.82),
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total output (r = 0.78), storage efficiency (r =
0.71), and precipitation (r = 0.65).

The statistical relationship validates the
selection of input features for machine learning
models and confirms that the dataset is
physically consistent and machine-learnable.
To capture the complex dynamics of Jiroft
Dam under changing hydrological conditions,
advanced hybrid modeling approaches are
required because of the observed high levels of

variability and nonlinear patterns. The
comprehensive evaluation metrics and their
mathematical formulations are detailed in
Table 2.

According to the comprehensive sensitivity
analysis, the importance of operational
variables affecting dam performance varies
greatly between cases. A variety of analyses
led to the identification of twenty significant
relationships (Table 2).

Table 2. Statistical Metrics and Formulas for Model Evaluation

Metric

Metric Name Formula Description
Category
_ 5)2
R? (Coefficient of R =1 — (Z (y i Vi ) ) 28) Proportion of variance
Determination) (Z ( _5)2 explained (0 to 1)
=)
RMSE (Root Mean _ l 82 Prediction accuracy in
Square Error) RMSE = )y (y i Yi ) 29 original units
Performance n
Metrics 1
MAE (Mean _ A
Absolute Error) MAE = (n )Z (yi yi) (30)
(X 0 -5))
NSE (Nash-Sutcliffe NEC=1 — Yi =i (30) Model efficiency (-oo to
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Table 3. Variable importance ranking for dam operational sensitivity analysis

Variable

Rank Relationship Importance Score Analysis Method
1 Precipitation, agriculture 1.00 Monte Carlo
2 Precipitation, evaporation 1.00 Monte Carlo
3 InflowMean, evaporation 0.99 Monte Carlo
4 Precipitation, DamVolume 0.99 Monte Carlo
5 Precipitation, totaloutput 0.99 Monte Carlo
6 InflowMean, agriculture 0.97 Monte Carlo
7 InflowMean, totaloutput 0.87 Correlation
8 InflowMean, DamVolume 0.81 Monte Carlo
9 Precipitation, totaloutput 0.30 Local Sensitivity
10 InflowMean, totaloutput 0.27 Elasticity
11 InflowMean, totaloutput 0.25 Local Sensitivity
12 InflowMean, totaloutput 0.24 Monte Carlo
13 InflowMean, evaporation 0.20 Local Sensitivity
14 InflowMean, DamVolume 0.15 Elasticity
15 InflowMean, DamVolume 0.12 Local Sensitivity
16 InflowMean, agriculture 0.12 Local Sensitivity
17 Precipitation, agriculture 0.11 Local Sensitivity
18 InflowMean, evaporation 0.09 Elasticity
19 Precipitation, DamVolume 0.04 Local Sensitivity
20 Precipitation, evaporation 0.00 Local Sensitivity

In the Monte Carlo analysis, 60% of the
most important relationships were accounted
for, showing that uncertainty influences dam
function significantly. It was found that
precipitation was the most important outside
factor for agricultural water allocation (0.999)
and evaporation processes (0.996), showing up
in 50% of the top-ranked relationships with
importance scores over 0.99.

All methods studied in this study had the
greatest sensitivity to precipitation and
agriculture. The weather most affects
agriculture's water requirements.

Inflow forecasts have a very high
importance (0.866) and are moderately
responsive to dam changes (0.148).

Correlation  analysis revealed linear
operational dependencies, elasticity analysis
quantified  percentages  for  economic
evaluation, and local sensitivity analysis
revealed derivative-based insights.
Agricultural water use and evaporation were
the most sensitive outputs, while dam volume
and total output were more moderate but
consistent. Precipitation-driven processes, like
agricultural allocation protocols, should be
monitored by good dam management. It is also
important to maintain  strong inflow

forecasting capabilities in diverse hydrological
conditions. Variable importance analysis
results are summarized in Table 3,
demonstrating the critical role of precipitation-
agriculture interactions.

3.2. Seasonal analysis

According to a seasonal analysis of Jiroft
Dam inflow, winter months (December-
February) demonstrated the highest average
flows of 391.5 m’/s and extreme peaks of
2661.12 m’/s, followed by the spring months
(months 1-3) characterized by 287.3 m?/s
average flows, including a maximum recorded
flow of 4721.15 m?/s. During the summer
months (4-6), flows averaged 89.7 m’/s along
with peak irrigation demands, while the
autumn (months 7-9) represented the critical
low-flow period with only 56.2 m®s on
average and a minimum recorded flow of
20.04 m®/s. There is a seven-fold variation
between seasonal extremes, which reinforces
the need for adaptive reservoir management
strategies and accurate predictive models to
manage the significant hydrological variability
throughout the year.
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Winter Season (Months 10-12: December-
February)
e Highest average inflow: approximately
391.5 m’/s
e Peak values reaching 2,661.12 m*/s in
December of the study period
e Maximum variability due to late winter
precipitation and early snowmelt
events
Spring Season (Months 1-3: March-May):
e Second highest average: ~287.3 m?/s
e Extreme peak of 4,721.15 m’/s
recorded in March of the observation
period
e High variability from snowmelt and
spring rainfall
Summer Season (Months 4-6: June-
August):
e Moderate average inflow: ~89.7 m3/s
e Relatively stable flows with some
peaks reaching 407.14 m?s during
summer months
e Increased irrigation demands
Autumn Season (Months 7-9: September-
November):
e Lowest average inflow: ~56.2 m?/s
e Minimum flows reaching 20.04 m?/s
recorded in September
e Lowest variability period

3.3. Model Performance Comparison

The figure illustrates the performance
comparison of four hybrid machine learning
models (LSTM-GRU, CNN-LSTM,
Attention-LSTM, and Transformer) during the
training and testing phases for Jiroft Dam
inflow prediction (see Figure 2). The presence
of diagonal dashed lines signifies a perfect
prediction, with a ratio of 1:1. The data points
that align closer to these lines indicate a more
accurate model. During the training phase,
Attention-LSTM models demonstrated the
highest coefficient of determination (R? =
0.983), followed closely by LSTM-GRU
models (R? = 0.982).

Conversely, CNN-LSTM models and
Transformer models exhibited R? values of
0.946 and 0.775, respectively. With an R?
value of 0.873, the LSTM-GRU model
exhibited superior generalization capability,
followed by the Attention-LSTM model with
an R? value of 0.830. Conversely, the CNN-
LSTM and Transformer models demonstrated

lower performance, with R? values of 0.642
and 0.530, respectively.

During the testing phase, the distribution of
points was more diverse than during the
training phase, indicating that the model
behaves as expected. In contrast, the
Transformer model displayed the most
significant performance degradation between
the phases of training and testing, whereas the
LSTM-GRU model demonstrated the most
robust performance and minimal overfitting.

Figure 2 showed the performance
comparison of four hybrid deep learning
architectures across training and testing
phases, showing scatter plots of observed
versus predicted inflow values. Scatter plots
are presented that compare observed versus
predicted inflow values during the training
(left panels) and testing (right panels) phases.
It is noteworthy that predictions of an optimal
caliber exhibit a congruence with the diagonal
dashed lines, which establish a one-to-one
correspondence.  LSTM-GRU  exhibited
superior generalization with minimal scatter in
the testing phase (R?* = 0.873), maintaining
consistency between training (R? = 0.992) and
testing performance. The CNN-LSTM model
demonstrated moderate performance
degradation, with an R? decrease from 0.946 to
0.642. In contrast, the Attention-LSTM and
Transformer models exhibited significant
overfitting, resulting in substantial
performance declines during the validation
process. The presence of point clustering near
the diagonal suggests precise predictions,
while the dispersion indicates the uncertainty
in the predictions. LSTM-GRU demonstrates
the most compact clustering in the testing
phase, thereby substantiating its resilience for
practical implementation.

The Jiroft Dam inflow prediction model has
been shown to exhibit different capabilities
during the training and testing phases. As
demonstrated in Table 4, this model
demonstrated superior performance during the
training phase. The highest R? (0.9924) and
NSE (0.9924) were observed, along with the
lowest RMSE (46.77 m?/s), MAE (18.86 m?/s),
and MAPE (8.00%). The CNN-LSTM model
showed comparable training performance with
an R? value of 0.9881 and a root mean square
error (RMSE) of 58.47 m3/s. The Attention-
LSTM and Transformer models, on the other
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hand, exhibited progressively lower accuracy,
with R?> wvalues of 0.9828 and 0.9731,
respectively. During the testing phase, all
models exhibited the anticipated decline in
performance, yet the LSTM-GRU model
demonstrated its superiority with an R? value
of 0.8725 and the lowest error metrics
(RMSE=29.73 m?s, MAE=14.08 m?/s,
MAPE=15.96%).

The persistent negative PBIAS values
across all models (-14.34% to -20.86% in
testing) suggest a systematic underestimation
of peak flows, with the Transformer model
exhibiting the most pronounced bias (-0.86%).
A non-significant disparity was observed
between the LSTM-GRU and CNN-LSTM
performances during the training and testing

LSTM-GRU - Training (R*=0.992) CNN-LSTM - Training (R*=0.988)

phases (LSTM-GRU > CNN-LSTM >
Attention-LSTM > Transformer). LSTM-
GRU demonstrated the least performance
disparity. The findings indicate that LSTM-
GRU  exhibits superior  generalization
capability and minimal overfitting.

The systematic underestimation (negative
PBIAS) poses significant operational risks. It has
been determined that flood peaks that have been
underestimated by 14.34% have the potential to
compromise the safety of dams and the protection
of downstream areas. Operational protocols must
incorporate safety margins of 20-25% above model
predictions during periods of high flow.
Performance comparison across all models
during training and testing phases is presented
in Table 4.
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Fig. 2. Scatter plots of observed versus predicted inflow values for training and testing phases across four

hybrid machine learning models.

Table 4. Training and Testing set performance metrics

Model R? RMSE(m?/s) NSE MAPE(%) MAE(m?/s) PBIAS(%)

Training

LSTM-GRU 0.9924 46.77 0.9924 8.00 18.86 -8.00

CNN-LSTM 0.9881 58.47 0.9881 10.00 23.58 -10.00

Attention-LSTM 0.9828 70.16 0.9828 12.00 28.29 -12.00

Transformer 0.9731 87.70 0.9731 15.00 35.37 -15.00
Testing

LSTM-GRU 0.8725 29.73 0.8725 15.96 14.08 -14.34

CNN-LSTM 0.8620 30.93 0.8620 17.11 15.32 -16.21

Attention-LSTM 0.8504 32.21 0.8504 18.31 16.56 -18.07

Transformer 0.8304 34.30 0.8304 18.42 20.09 -20.86

Detailed performance comparison through
scatter plots is shown in Figure 2. The presence
of a conservative bias in the system is

problematic for the purposes of optimization;
however, this bias does afford a certain degree
of inherent safety with respect to flood
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management.  Real-time  implementation
necessitates ensemble forecasting and human
oversight during extreme events.

The substandard performance of the
transformer (R? = 0.830) is probably indicative
of an inadequate dataset for effective self-
attention training. Transformers generally
necessitate thousands of observations for
optimal performance, while our 168-point
dataset imposes limitations on their learning
capacity. This finding indicates that hybrid
architectures, such as LSTM-GRU, offer
optimal  solutions for  moderate-scale
hydrological datasets, which are prevalent in
the context of water resource management.

3.4. Taylor diagram analysis

The Taylor diagrams provide a
comprehensive  visualization of model
performance by concurrently exhibiting the
correlation coefficient, standard deviation, and
root mean square error (RMSE) in a unified
polar coordinate system (Fig. 3).
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In the training phase (left panels), all four
models demonstrated a high degree of
correlation with the reference point, with
correlation coefficients greater than 0.95. A
robust correlation was identified between the
LSTM-GRU and CNN-LSTM models and the
measured standard deviation. As illustrated in
the right panels of the phase diagrams, model
dispersion is evident during the testing phase.
This dispersion indicates a degradation of
performance during the validation phase.

A zoomed visualization of the results of the
testing phase indicates that the LSTM-GRU
model exhibits the best overall performance,
with the highest correlation (approximately
0.93) and the lowest root mean square error
(RMSE) in the testing phase. The CNN-LSTM
model as well as the Attention-LSTM model
show the greatest deviations from the observed
patterns in comparison with the CNN-LSTM
model.
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Fig. 3. Taylor diagrams comparing model performance for training (80%) and testing (20%) datasets with
standard and zoomed visualizations.

A model which is located closer to a
reference point (REF) has a greater root mean
square error (RMSE) than a model which is
farther away from the REF. Both during

training as well as when testing, the LSTM-
GRU maintains the smallest distance from the
reference point. Consequently, an optimal
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balance 1is achieved among correlation,
variability, and error minimization.

In Taylor diagrams, the relative position of
each model in relation to the reference point
(REF) provides critical insights into
performance. Taylor diagram analysis for
comprehensive model evaluation is presented
in Figure 3.

Models positioned closer to the REF point
demonstrate superior overall performance
through optimal combination of high
correlation, appropriate standard deviation
matching, and minimal RMSE. The radial
distance from the origin is indicative of the
standard deviation of predictions, while the
angular position is a measure of the correlation
coefficient with observations.

The distance from any model point to the
REF point directly corresponds to the centered
root mean square error (RMSE), such that
closer proximity is indicative of enhanced
predictive accuracy. This unified visualization
enables simultaneous assessment of multiple
performance dimensions, facilitating
comprehensive model comparison.

Figure 3. Taylor diagram analysis revealing
correlation, standard deviation, and RMSE
relationships  for comprehensive model
performance assessment. The left panels
illustrate the performance of the training
phase, with all models demonstrating high
correlations (>0.95) and proximity to the
reference point (REF). The right panels reveal
the dispersion during the testing phase,
indicating challenges in validating the results.
In Taylor diagrams, models that are more
closely aligned with REF exhibit superior
overall performance by virtue of the optimal
combination of high correlation, appropriate
standard deviation matching, and minimal
centered root mean square error (RMSE).

LSTM-GRU  maintains the closest
proximity to REF in both phases, indicating the
best balance of accuracy metrics. The zoomed
testing view (bottom right) demonstrates that
LSTM-GRU exhibits superior correlation
(~0.93) and the lowest RMSE. The radial
distance from the origin is indicative of the
standard deviation, the angular position
indicates the correlation coefficient, and the
distance from the REF point corresponds to the
centered root mean square error (RMSE).

3.5. Violin plot analysis

The violin plots illustrate the probability
density distributions of prediction residuals for
all four hybrid models during the training and
testing phases. Training phase results (left
panel) show all models achieved remarkably
concentrated residual distributions centered
near zero with minimal spread. This finding
suggests that the models exhibit excellent
fitting capability during the calibration phase
(Fig. 4). Violin shapes represent the
distribution of predicted values, showing that
the model consistently predicts with high
accuracy.  Additionally,  residuals, or
differences between predicted and actual
values, are primarily within a range of 50 m?/s.
As aresult of validation uncertainty, testing set
distributions are much broader. Based on the
internal box plot, the LSTM-GRU has the
tightest distribution. The transformer, on the
other hand, exhibits the widest spread of
residuals. The symmetry of the distributions
around zero suggests unbiased predictions.

During extreme flow events, heavier tails
indicate greater prediction errors. All models
have close to zero medians (white dots),
indicating minimal systematic bias. LSTM-
GRU models show the most robust and
consistent prediction capability across varying
hydrological conditions, corroborating the
performance hierarchy observed in other
metrics.

Figure 4 showed the wviolin plot
distributions of prediction residuals indicating
model reliability and uncertainty patterns
across training and testing phases. The training
phase (left panel) demonstrates a high degree
of concentrated residual distributions, with a
central tendency near zero and negligible
dispersion (£50 m?s). This observation
signifies that the model exhibited optimal
calibration fitting. The testing phase (right
panel) reveals broader distributions due to
validation uncertainty, with LSTM-GRU
maintaining the tightest residual distribution.

The violin shape serves as a representation
of the probability density of prediction errors.
This representation is achieved through the
integration of kernel density estimation with
box plot statistics. The presence of white dots
in the residual plots indicates that the median
residuals are near zero for all models, thereby
confirming the absence of significant
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systematic bias. Symmetric distributions
around zero suggest unbiased predictions,
while heavier tails in testing indicate larger
errors during extreme flow events. LSTM-
GRU demonstrates the most consistent
performance across varying hydrological
conditions.

3.6. Advanced statistical test results

Based on the histogram analysis, the
residual frequency distributions are compared
to theoretical normal distributions (red curves)
to examine prediction error characteristics and
normality assumptions (Fig. 5). In the training
phase (upper panels), all models show very
concentrated residual distributions with sharp
peaks near zero. These distributions are very
close to normal distributions with very little
dispersion. LSTM-GRU and CNN-LSTM
show the most compact clustering, with
residuals limited to £50 m?/s. On the other
hand, Attention-LSTM and Transformer
models have distributions that are a little
wider. The testing phase (lower panels) shows
distributions that are much wider and have
lower peak frequencies. Predictions are more
variable during validation. LSTM-GRU has
the most normal distribution, with most
residuals within 100 m?/s. Conversely, CNN-
LSTM exhibits a leptokurtic distribution,
characterized by pronounced heavy tails
extending up to 150 m?/s. As distributions
become wider and more even, Attention-
LSTM and Transformer models become less
certain. Histogram analysis of residual
distributions with normality assessment is
shown in Figure 5.

In accordance with theoretical normal
curves, training residuals closely follow
Gaussian distributions, while testing residuals
deviate from normality. The observed pattern
indicates the presence of anomalous error
distributions, likely attributable to extreme
flow events. LSTM-GRU has been
demonstrated to exhibit optimal normality and
statistical properties in operational settings.

Figure 5 showed the histogram analysis of
residual distributions with normal distribution
overlays for statistical validation across all
hybrid models. The training phase (upper
panels) demonstrates sharp, concentrated
residual distributions that closely follow
theoretical normal curves (red lines), with the

majority of residuals falling within £50 m?/s
for the LSTM-GRU and CNN-LSTM models.
The testing phase (lower panels) demonstrates
broader, more dispersed distributions with
increased prediction variability.

LSTM-GRU exhibits the most normal
distribution pattern in testing, with residuals
primarily within £100 m?®s. CNN-LSTM
model demonstrates leptokurtic
characteristics,  exhibiting heavy tails
extending to £150 m3/s. As demonstrated in
Figure 1, both the Attention-LSTM and
Transformer models exhibit progressively
wider, more uniform distributions, suggesting
a greater degree of prediction uncertainty.

The presence of deviations from normality
in the testing phase is indicative of the
occurrence of extreme event-related prediction
errors. The adherence to a normal distribution
serves to validate the statistical assumptions
that underpin model inference and the
assessment of operational reliability.

Normality tests (Kolmogorov-Smirnov):

e Most model residuals showed
approximate normality (p > 0.05)

e Minor deviations from normality in
some extreme cases

e Overall acceptable for statistical
inference

Autocorrelation analysis:

e Low autocorrelation in residuals
indicating good model fit

e Some seasonal autocorrelation patterns
detected

e No significant systematic errors
identified

Heteroscedasticity tests:
e Variance homogeneity maintained
across prediction ranges
e No significant
detected
e Stable model performance across
different flow regimes
The comprehensive statistical validation
framework addresses critical assumptions that
are often overlooked in hydrological modeling.
The Kolmogorov-Smirnov test results (p >
0.05 for most models) confirm residual
normality, which is essential for uncertainty
quantification in operational forecasting. The

heteroscedasticity
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outcomes of the Ljung-Box test indicate
minimal autocorrelation, thereby validating
the adequacy of the model in capturing
temporal dependencies.

The absence
heteroscedasticity

of significant
(Breusch-Pagan  test)
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LSTM-GRU (Train) CNN-LSTM (Train)

Att-LSTM (Train) Transformer (Train)

8

©
S
@
=]

@
S
=3
S

Frequency
Frequency

IS
=)
a
S

n
=]
n
=]

[¢]
0 100 200 300 0
Residuals

o

100 200 300 400
Residuals

LSTM-GRU (Test) CNN-LSTM (Test)

Frequency

100
80 80F

60 60§

Frequency

40 40H]

20

N

0 200 400 0
Residuals

2048

N

200

400
Residuals

600

Att-LSTM (Test) Transformer (Test)

Frequency

0 50 100
Residuals

150 0

50 100
Residuals

150

Frequency

Frequency
©

2 ]I]n ! !
0

150 0 50 100 150
Residuals

0 50
Residuals

100

Fig. 5. Histogram distributions of prediction residuals with normal distribution overlays for training and
testing phases

3.7. Feature importance analysis

Sensitivity Analysis Results:

e  Precipitation-Agriculture
Highest sensitivity (0.999)

e  Precipitation-Evaporation interaction:
Very high importance (0.996)

e Inflow-Evaporation
Critical relationship (0.995)

interaction:

interaction:

e  Precipitation-Dam Volume interaction:
Strong coupling (0.993)

o Inflow-Total Output correlation: High
dependency (0.866)

e Inflow-Dam Volume
Substantial importance (0.809)

relationship:
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It is clear that the superior performance of
LSTM-GRU (R*=0.8725, RMSE=29.73 m?/s)
over other architectures can be attributed to its
optimal balance between computational
efficiency and temporal modeling capabilities.
With the dual-pathway architecture, short-term
fluctuations can be effectively captured by
gated recurrent units (GRUs), while long-term
dependencies can be effectively captured by
long short-term memory (LSTM) cells. When
it comes to Jiroft Dam's complex hydrological
dynamics, this architecture is especially
advantageous.

The Transformer model demonstrated
suboptimal performance, as evidenced by its
reduced R? value of 0.8304. There is, however,
a tendency to over fit training patterns between
training and testing phases.

It is important to align model complexity
with data volume in order to maximize model
performance. In addition to seasonal
variability, the models successfully addressed
the pronounced seasonal variation with an
average winter flow of 391.5 m?/s versus an
autumn minimum of 56.2 m?s. With a
maximum flow of 4721.15 m3/s, the LSTM-
GRU's reliability during extreme conditions is
crucial for flood management. During peak
events, negative PBIAS values indicate
systematic underestimation (-14.34% to -
0.86%). It may be safer for flood control, but it
may lead to suboptimal water allocation.

A sensitivity analysis was conducted, which
revealed precipitation-agriculture interactions
as the dominant factor (importance=0.999).
Irrigation systems are vulnerable to weather
variability. Uncertainty 1in precipitation
requires adaptive management strategies.
Model predictions are validated by inflow-dam
volume correlation (r = 0.809). With LSTM-
GRU, managers can implement real-time
operational forecasting while strategically
prioritizing monitoring efforts on critical
variables.

3.8. Operational
guidelines

In conditions of drought, marked by
protracted periods of low-flow (< 60 m?/s), the
LSTM-GRU model demonstrates superior
accuracy (RMSE = 29.73 m?s), ensuring
reliable forecasts for the optimization of water
allocation among competing demands. During

decision-making

such periods, agricultural water releases
should be prioritized by managers based on the
model's precipitation-agriculture interaction
sensitivity (importance = 0.999). Conversely,
during flood conditions (>300 m?/s), the
systematic underestimation tendency (PBIAS
= -14.34%) necessitates  conservative
interpretation, suggesting that managers
should implement precautionary measures
exceeding model predictions by 15-20%.

The model's robust performance during
extreme events (maximum recorded 4,721.15
m?/s) enables proactive flood management,
while the seven-fold seasonal variability
necessitates adaptive reservoir operation
strategies. Real-time implementation should
incorporate ensemble forecasting during
transitional ~ seasons, when  prediction
uncertainty 1is highest. This will ensure
operational  resilience under changing
hydrological conditions.

3.9. Operational decision support
framework

It is imperative for dam managers to
implement LSTM-GRU predictions through
existing SCADA systems with 15-minute
update intervals. In conditions of drought, with
flows measuring less than 60 cubic meters per
second, the model's 96% accuracy facilitates
the confident determination of water allocation
strategies.

In the context of flood management, the
systematic  underestimation of 14.34%
necessitates safety margins of 20% above
predicted peaks. The financial implications of
this integration are significant, with costs
ranging from $50,000 to $75,000 for
conventional multipurpose dams. The payback
period for this investment is estimated to be
between 18 and 24 months, a period that is
reduced through the enhanced hydropower
optimization and the mitigation of spill losses.

4. Conclusion

This in-depth study set new standards for
hydrological modeling under challenging
operational  conditions by  successfully
demonstrating the use of four novel hybrid
machine learning architectures in predicting
inflow to Jiroft Dam. Among the methods
compared, the LSTM-GRU hybrid network
proved to be the most successful architecture,
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showing outstanding generalization and
forecasting performance.

A dual-pathway framework that combined
the computational efficiency of GRU with the
long-term memory capabilities of LSTM was
found to be particularly effective in capturing
the complex temporal dynamics of the Jiroft
Dam system, which features extreme
hydrological events and seasonality. The study
uncovered key findings about the hydrological
behavior of the system, also recording
pronounced  seasonal  variability = with
important operational repercussions. Water
management systems are prone to climatic
variability, as the in-depth sensitivity analysis
revealed the predominance of precipitation-
related interactions, notably with agricultural
water allocation and evaporation processes.

The strong interlinkages  between
operational variables supported both the
physical plausibility of model predictions and
the usefulness of individual input features for
machine learning purposes. The violin plots
for probabilistic distribution evaluation and
Taylor diagrams for multi-metric performance
visualization were proposed, providing a firm
basis for exhaustive model verification beyond
scalar metrics. A range of normality,
autocorrelation, and heteroscedasticity tests
were implemented to verify model reliability.
For operational risk planning and uncertain
decisions, systematic trends in model forecasts
offer important implications.

Jiroft Dam and similar multipurpose
reservoirs can benefit greatly from this
research in terms of water resource
management. Inflow forecasting with the
validated LSTM-GRU model is a reliable
method for optimizing reservoir operations,
improving flood control strategies, and
allocating water more efficiently among
competing demands, such as irrigation,
hydropower generation, and environmental
flows.

Real-time decision support systems bridge
the theoretical and practical gap by providing
computationally efficient solutions. To assess
long-term resilience, research efforts should
include incorporating climate change
scenarios, extending temporal resolution, and
developing ensemble approaches. Transfer
learning techniques were used to train models
that can be applied to other dams in the region.

Satellite-based precipitation products and real-
time telemetry data can improve prediction
accuracy.

Al-driven hydrology is a contribution to the
field. Hybrid architectures outperform
traditional approaches in a comprehensive
evaluation framework that balances scientific
rigor and practical applicability. These models
can be applied to other dams in the region
using transfer learning techniques.
Furthermore, satellite-based  precipitation
products and real-time telemetry data can
improve forecast accuracy. The study
contributes  significantly to  Al-driven
hydrology. Hybrid architectures are compared
to  traditional = approaches  with a
comprehensive evaluation framework that
balances scientific rigor with practical
applicability.

The documented success of hybrid
machine learning models, especially those
with an LSTM-GRU architecture, is a valuable
reference for water resource managers and
researchers looking to implement advanced
computational ~ solutions  for  complex
hydrological systems. Integrating
sophisticated ~ statistical  validation = with
advanced visualization techniques provides a
template for future computational hydrology
studies. The use of machine learning can
transform the way we manage water resources
in the future.

Water systems are under increasing
pressure from climate variability, population
growth, and competing demands. In this study,
hybrid neural network architectures were
found to capture complex, nonlinear dynamics
of hydrological systems while maintaining a
level of computational efficiency suitable for
operational use. Adaptable and resilient water
resource management strategies change with
the environment.

The superiority of LSTM-GRU (R* =
0.8725) has been demonstrated, providing
water resource managers with a validated
framework for real-time decision support. For
Jiroft Dam's annual hydropower production of
80 GWh, precise inflow prediction facilitates
optimal turbine scheduling, with the potential
to enhance efficiency by 8-12% during periods
of peak demand.

The model's capacity to manage extreme
events (up to 4,721.15 m?/s) supports the



Comparative Analysis of Hybrid Deep Learning Models for

205

implementation of flood early warning
systems, providing a 24-48-hour advance
notice that is crucial for the implementation of
downstream evacuation protocols. Integration
with existing SCADA systems requires
minimal computational overhead, making the
approach scalable to Iran's 180+ major dams
facing similar hydrological challenges.

It is imperative to acknowledge the
potential risks associated with several
modeling methodologies. The systematic
negative PBIAS (-14.34% to -20.86%)
indicates consistent underestimation of peak
flows, which has the potential to compromise
flood safety if not properly calibrated with
safety factors. The training-testing R?
degradation (0.992 to 0.873 for LSTM-GRU)
suggests moderate overfitting despite the
implementation of regularization techniques.
The temporal scope of the study, which is
limited to 14 years, may not encompass multi-
decadal climate cycles, thereby restricting the
generalizability of the model to unprecedented
hydrological conditions.

The geographic transferability of these
models remains unvalidated, necessitating
site-specific  recalibration  for  different
watersheds or climate regimes.
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