Aleid, S., Wu, M., Li, R., Wang, W., Zhang, C., Zhang, L. & Wang, P. (2022). Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Materials Letters, 4(3), 511–520. doi:10.1021/acsmaterialslett.1c00723.
An, F., Akther, N., Duan, X., Peng, S., Onggowarsito, C., Mao, S., Fu, Q. & Kolev, S.D.(2022). Recent development of atmospheric water harvesting materials: A review. ACS Materials, 2(5), 576–595. doi:10.1021/acsmaterialsau.2c00016.
Du, X., Xie, Z., Zhang, H., Jiang, S., Su, X. & Fan, J. (2025). Robust mix-charged polyzwitterionic hydrogels for ultra-efficient atmospheric water harvesting and evaporative cooling. Advanced Material, 37(33), e2505279 doi:10.1002/adma.202505279.
Kallenberger, P.A. and Fröba, M. (2018). Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix. Communications Chemistry., 1:28. doi:10.1038/s42004-018-0028-9.
LaPotin, A., Zhong, Y., Zhang, L., Zhao, L., Leroy, A., Kim, H., Rao, S.R. &Wang, E. (2021). Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule, 5(1), 166–182. doi:10.1016/j.joule.2020.09.008.
Lee, Y., Nah, S.H., Wang, K.-Y., Chi, Y., Kim, J.B., Zhang, Z. & Yang, S. (2025). Highly scalable, raspberry-like microbeads with nano-/micro-confined hybrid hydrogel desiccants for rapid atmospheric water harvesting. Advanced Functional Materials, 35(18), 2506725. doi:10.1002/adfm.202506725.
Lei, C., Guo, Y., Guan, W., Lu, H., Shi, W. &Yu, G. (2022). Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angewandte Chemie International Edition., 61(13). e202200271 doi:10.1002/ange.202200271.
Li, Q., Shao, Z., Zou, Q., Pan, Q., Zhao, Y., Feng, Y., Wang, W., Wang, R. & Ge, T. (2024). An atmospheric water harvesting system based on the ‘Optimal Harvesting Window’ design for worldwide water production. Science Bulletin. 69(5), 1437–1447. doi:10.1016/j.scib.2024.03.018.
Li, R., Shi, Y., Shi, L. (2018). Hybrid hydrogel with high water vapor harvesting capacity for atmospheric water generation. Environmental Science &Technology, 52(19), 11367–11377. doi:10.1021/acs.est.8b02832.
Min, X., Wu, Z., Wei, T., Hu, X., Shi, P., Xu, N., Wang, H., Li, J., Zhu, B. & Zhu, J. (2023). High-yield atmospheric water harvesting device with integrated heating/cooling enabled by thermally tailored hydrogel sorbent. ACS Energy Letters, 8, 3147–3153. doi:10.1021/acsenergylett.3c00682.
Ni, F., Xiao, P., Zhang, C. and Chen, T. (2022). Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation. Matter, 5,2624–2658. doi:10.1016/j.matt.2022.06.033.
Park, H., Haechler, I., Schnoering, G., Ponte, M.D., Schutzius, T.M. and Poulikakos, D. (2022). Enhanced atmospheric water harvesting with sunlight-activated sorption ratcheting. ACS Appllied Materials &Interfaces, 14(2).2237–2245. doi:10.1021/acsami.1c18852.
Yang, X., Chen, Z., Xiang, C., Shan, H. & Wang, R. (2024). Enhanced continuous atmospheric water harvesting with scalable hygroscopic gel driven by natural sunlight and wind. Nature Communicatins, 15, 7678. doi:10.1038/s41467-024-52137-4.