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Abstract 

The aim of this research is to simulate and predict the groundwater level in the Siminehrood River 

Basin, which is situated south of Lake Urmia, Iran. This simulation was conducted using copula 

functions while accounting for changes in river discharge influenced by climate change. A total of 26 

large-scale CMIP6 models were utilized in this study. Precipitation data were downscaled and 

simulated using the LARS WG 7.0 model. Subsequently, precipitation data for both the baseline 

period (1988-2018) and the future period (2031-2050) were predicted for three scenarios: SSP1-2.6, 

SSP2-4.5, and SSP5-8.5 through a weighted average method. Following the simulation and prediction 

of precipitation in the Siminehrood River Basin, copula functions were employed to simulate and 

predict both river discharge and groundwater levels. Prior to fitting the copula function, correlations 

between pair of parameters precipitation-river discharge and river discharge-groundwater level were 

examined using Kendall's tau coefficient; correlation values obtained were 0.43 for precipitation-river 

discharge and 0.44 for river discharge-groundwater level. After selecting marginal distributions and 

examining these correlations, ten different copula functions were fitted to each pair of parameters in 

order to identify the most suitable model among them. The results from predicting precipitation 

related to climate change indicated that annual precipitation under all three scenarios would decrease 

compared to the measured precipitation. Annual precipitation reductions were projected to be 5.1 mm, 

31.5 mm, and 34.8 mm under the scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. Analysis 

through copula functions revealed that the Clayton copula provided optimal performance when 

creating a joint distribution for these pair of parameters during simulation phases concerning river 

discharge as well as groundwater levels and its accuracy was validated based on evaluation criteria 

including NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square error), and R² (coefficient of 

determination). Furthermore, it was concluded that reductions in annual precipitation would lead to 

decreases in annual river discharge ranging from 2.9 m³/s to 6.6 m³/s alongside an annual drop in 

groundwater levels estimated between 0.3 m and 1.5 m. 

Keywords: Climate change, Copula functions, Downscaling, Marginal distribution functions, 

Siminehrood River. 

 

1. Introduction 

Three-dimensional atmosphere-ocean 

general circulation models (AOGCMs) are 

among the most reliable tools for predicting 

climate change over future periods. As the 

impacts of climate change are closely tied to 

the outputs generated by these models (Chen et 

al., 2019), enhancing their accuracy is crucial 

for making more dependable predictions based 

on findings presented in the Climate Change 

Sixth Assessment Report (Eyring et al., 2016; 

Stouffer, 2017). The global significance of 

climate change necessitated the establishment 

of the Intergovernmental Panel on Climate 
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Change (IPCC) in 1988, initiated by the World 

Meteorological Organization (WMO) and 

supported by the United Nations Environment 

Program (UNEP).  

The IPCC's mandate encompasses a 

comprehensive assessment of all facets related 

to this global phenomenon. Key variables such 

as precipitation, temperature, and solar 

radiation serve as primary inputs to natural 

ecosystems, especially in basin environments, 

where variations can significantly influence 

productivity and structural integrity. Water 

availability within a basin is particularly 

sensitive and serves as a critical factor 

concerning climate change from economic, 

social, and environmental perspectives. 

Consequently, examining how climate change 

affects this vital resource is imperative. 

AOGCMs simulate Earth's evolutionary 

processes across various locations while 

integrating interactions between atmospheric 

conditions, ocean currents, sea ice formation, 

and terrestrial landscapes. These models 

effectively describe how these components 

interact with one another to produce and 

modify complex climatic variables. As such, 

they play an essential role in simulating 

climate dynamics over time and space, which 

ultimately aids in predicting future climatic 

scenarios (Su et al., 2016). 

In summary, AOGCMs not only provide 

insights into past climatic behaviors but also 

project potential future changes under varying 

greenhouse gas emission scenarios. Their 

ability to represent intricate feedback 

mechanisms within Earth's system makes them 

indispensable tools for understanding potential 

impacts on water resources, a crucial aspect 

given ongoing concerns surrounding global 

water scarcity exacerbated by changing 

climates. 

In recent years, the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) has 

released a new set of coordinated climate 

model simulations aimed at supporting the 

Sixth Assessment Report (AR6). Assessments 

from various regional studies have indicated 

that CMIP6 models exhibit improvements over 

their predecessors utilized in earlier reports 

(Rivera and Arnould, 2019; Gusian et al., 

2020). These advancements have allowed for a 

deeper examination of the impacts of climate 

change on various climatic parameters. 

Chu et al., (2017) conducted an analysis of 

agricultural heat and precipitation resources in 

northeastern China under two Representative 

Concentration Pathways (RCPs), specifically 

RCP4.5 and RCP8.5, over the period from 

2005 to 2099. Their results demonstrated 

several significant trends regarding 

temperature-precipitation distributions across 

this region. Notably, they found that while 

temperature consistently decreases from south 

to north, an overall increase in temperatures 

was projected across all areas studied. Under 

RCP4.5, the annual mean temperature is 

anticipated to reach approximately 9.67°C 

while under RCP8.5 this figure rises to about 

10.66°C, indicating a pronounced warming 

trend as emissions escalate.  

Consequently, changes in other agricultural 

heat resources are expected to correlate closely 

with these rising temperatures. Particularly 

noteworthy is that the rate of temperature 

increases towards the late 21st century is 

significantly more pronounced under the more 

RCP8.5 scenario. Regarding precipitation 

trends during growing seasons in northern 

China, there appears to be an upward 

trajectory. However, this trend lacks statistical 

significance and is characterized by high 

annual variability moving forward into future 

decades. In eastern regions of China, 

projections indicate an increase in 

precipitation levels; conversely, western China 

is expected to experience reductions in 

precipitation. 

Dunning et al., (2018) conducted an 

assessment of climate change impacts on 

rainfall patterns in Africa, specifically 

focusing on the RCP8.5 emission scenario. 

Their findings suggest a significant increase in 

rainfall across North Africa, with an average 

rise of over 100 mm by the end of the 21st 

century. The study indicates that while the 

volume of rainfall occurring on rainy days will 

increase, there will be a corresponding 

decrease in the total number of rainy days.  

Qin et al., (2021) projected temperature and 

precipitation changes for northwest China 

under various Shared Socioeconomic 

Pathways (SSPs) coupled with Representative 

Concentration Pathways (RCPs). The study 

forecasts a rise in the annual mean temperature 

for the long-term period (2081–2100)  under 

different scenarios by 1.4°C (SSP1-1.9), 1.9°C 
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(SSP1-2.6), 3.3°C (SSP2-4.5), 5.5°C (SSP3-

7.0), 2.7°C (SSP4-3.4), 3.8°C (SSP4-6.0), and 

6°C (SSP5-8.5). The study indicates that the 

increase in annual rainfall in the long term will 

be substantially greater than in both the near-

term (2021–2040) and mid-term (2041–2060). 

The long-term annual rainfall increase will be 

4.1% under the SSP1-1.9 scenario, 13.9% 

under the SSP1-2.6 scenario, 28.4% under the 

SSP2-4.5 scenario, 35.2% under the SSP3-7.0 

scenario, 6.9% under the SSP4-3.4 scenario, 

8.9% under the SSP4-3.4 scenario, 8.9% under 

the SSP4-6.0 scenario, and 27.3% under the 

SSP5-8.5 scenario compared to the base period 

(1995-2014).  

Shiru et al., (2022) provided an analysis of 

climate change impacts on precipitation in East 

Asia using CMIP6 models. The study indicates 

that precipitation will vary between -32% and 

+4% across various models for the years 2021-

2060. For period 2061-2100, predicted 

changes become more severe, with projections 

suggesting a range from -46.7% to +4.4%. 

Under the SSP5-8.5 scenario, precipitation 

changes during 2021-2060 are projected to be 

between -40% and +6.6%. The CanESM5 

model specifically predicts precipitation 

changes from -8.3% to +6.6%, indicating a 

potential for more localized impacts.  

Gebisa et al., (2023) conducted a 

comprehensive evaluation of climate change 

projections for the Baro River Basin using 

simulations from the CMIP6 models. The 

results showed that precipitation on an annual 

scale will increase by 6% under the SSP2-4.5 

scenario and 16.46% under the SSP5-8.5 

scenario.  Also, the average maximum 

temperature on an annual scale will increase by 

1.43°C and 1.81°C under the SSP2-4.5 and 

SSP5-8.5 scenarios, respectively, and the 

average minimum temperature on an annual 

scale is predicted to increase by 1.96°C and 

3.11°C under the SSP2-4.5 and SSP5-8.5 

scenarios, respectively. Abbas et al., (2022) 

conducted an assessment of precipitation 

trends in Pakistan utilizing simulations from 

the CMIP6 models under SSP1-2.6, SSP2-4.5, 

SSP3-7.0, and SSP5-8.5 scenarios.  

The study showed that summer 

precipitation will increase compared to winter 

in most scenarios. Annual precipitation will 

also increase significantly compared to the 

baseline period.  There is a clear trend showing 

that precipitation increase as one move from 

lower-pressure scenarios (like SSP1-2.6) to 

higher-pressure scenarios (such as SSP5-8.5). 

The theory of copulas has emerged as a 

powerful framework for understanding and 

modeling the dependence structures among 

random variables. Introduced by Sklar in 1959, 

copulas allow researchers to link the margins 

of univariate distributions to create a 

comprehensive multivariate distribution. This 

is particularly useful in fields where 

understanding the relationship between 

correlated variables is crucial.  

A copula is a mathematical function that 

links the individual marginal distribution 

functions of correlated random variables, 

allowing them to create a joint distribution 

function. Sklar's theorem states that any 

multivariate distribution can be represented 

based on its marginal distributions and a 

corresponding copula.  The flexibility provided 

by copulas to produce joint distributions has 

led to the increasing use of this method in 

various studies. Bai et al., (2020) conducted a 

comprehensive analysis of groundwater level 

frequency in the Yarkant River basin, utilizing 

copula functions to investigate the 

interrelationships between groundwater levels 

and various driving factors, including runoff 

and surface water flow.  

Their study was notable for its innovative 

methodology, which combined data from 16 

monitoring wells to assess how different 

variables influenced groundwater levels. The 

results indicated that groundwater exploitation 

had the most pronounced negative impact on 

groundwater levels. The analysis also revealed 

that runoff and irrigation rates were inversely 

related to groundwater levels.   

Among the various copula types explored, 

the Frank copula was identified as providing 

the best fit. Wable and Jha (2018) evaluated the 

effect of rainfall on groundwater level in West 

India using Archimedean copula functions. 

The results showed that Clayton copula 

function is the best copula function between 

the rainfall-groundwater level. They also 

concluded that the method of copula functions 

between the aforementioned variable pairs is 

recommended as the best method in conditions 

of data scarcity.   

You et al., (2018) conducted an analysis of 

the correlation between groundwater levels 
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and various controlling factors in the Jinghui 

Irrigation Area of Central China, employing 

copula functions on annual time series data. 

Among various copula functions evaluated, the 

Frank copula was found to provide a 

satisfactory description of the correlation 

between groundwater levels and the 

controlling factors, which included surface 

water and precipitation.  

Nazeri Tahroudi et al., (2021a) conducted a 

comprehensive study to analyze groundwater 

level changes in the Nazloochai Basin, 

specifically focusing on the sub-basin area of 

the Tapik Hydrometric Station during the 

statistical period from 2003 to 2015. In this 

study employed of meta-heuristic algorithms 

to determine the optimal two-dimensional 

copula functions. Among the estimation 

methods compared, the maximum likelihood 

method demonstrated best performance, 

achieving a superiority ratio of 131% over the 

other algorithms tested. The study highlighted 

the Gumbel-Hougaard copula as the best 

copula for the two-dimensional analysis of 

deficiency signatures related to groundwater 

levels. 

The aim of this study is to create a copula-

based probabilistic model to assess the impact 

of climate change on river discharge and 

groundwater levels within the Siminehrood 

River Basin. A key innovation of this research 

lies in the application of the Intergovernmental 

Panel on Climate Change (IPCC) Sixth 

Assessment Report for estimating 

precipitation. The study employs various 

Archimedean copula functions, including 

extreme-value, Farlie-Gumbel-Morgenstern 

(FGM), and Plackett copulas, to facilitate 

probabilistic predictions and simulations 

regarding the effects of climate change on river 

discharge and groundwater levels in the 

Siminehrood River Basin. This approach 

allows for a comprehensive understanding of 

the interconnectedness of these hydrological 

variables in response to changing climatic 

conditions. 

 

2. Materials and Methods 

The Siminehrood River Basin, a crucial 

sub-basin of Lake Urmia, is situated at a 

geographical coordinate of 46.10° longitude 

and 36.39° latitude in West Azerbaijan 

Province, covering an area of approximately 

2,090 square kilometers. The river is fed by 

multiple tributaries as it flows westward 

through Bukan city before ultimately reaching 

Lake Urmia. 

For this study, daily data on precipitation, 

river discharge, and groundwater levels within 

the Siminehrood River Basin were utilized. 

Precipitation measurements were collected 

using Dashband Bukan rain gauge station 

selected based on entropy theory. River 

discharge values were obtained from the 

Dashband Bukan hydrometric station, one of 

the oldest and most comprehensive stations in 

the area, making it suitable for representing 

total basin discharge (Nazeri Tahroudi et al., 

2019).  

Groundwater levels (depth that is defined 

from the Earth’s surface to the water table) 

were monitored using a Mirabad piezometer; 

this well was also selected based on entropy 

theory to accurately reflect groundwater 

conditions across the entire basin (Nazeri 

Tahroudi et al., 2019). Data spans two 

significant periods: a baseline period from 

1988 to 2018 and a future period from 2031 to 

2050. Specifically, variables such as 

precipitation (mm), river discharge (m³/s), and 

groundwater level (m) will be assessed. 

Figure 1 illustrates the geographical 

locations of both the Dashband Bukan 

hydrometric station and rain gauge station 

alongside relevant mapping details. 

Additionally, statistical characteristics 

pertaining to parameters are compiled in Table 

1. 

 

2.1. Radiative forcing scenarios 

The Sixth Assessment Report (AR6) of the 

Intergovernmental Panel on Climate Change 

(IPCC) introduces a comprehensive 

framework for analyzing the interactions 

between climate change and socio-economic 

factors through various scenarios that combine 

Shared Socioeconomic Pathways (SSPs) and 

greenhouse gas concentration trajectories. 

These pathways include five distinct socio-

economic scenarios: 1- SSP1: Sustainable 

Development (focused on achieving 

sustainable development goals). 2- SSP2: 

Intermediate Policy Development (reflects 

moderate progress in policy implementation). 

3- SSP3: Regional Competitiveness 

(emphasizes regional disparities and 
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competitiveness). 4-SSP4: Inequality 

(highlights issues related to inequality across 

regions and populations). 5- SSP5: Fossil Fuel 

Development (centers around aggressive fossil 

fuel use and high energy consumption). These 

socio-economic pathways are paired with 

levels of greenhouse gas radiative forcing, 

allowing for an examination of how various 

economic developments could influence 

climate outcomes under different forcing 

scenarios.  

 

 
Fig. 1. The geographical location of the Dashband Bukan hydrometric and rain gauge stations 

 
Table 1. Statistical characteristics of the 

parameters examined on an annual scale 

Hydrometric Station Dashband 

Bukan 

Rain Gauge Station Dashband 

Bukan 
Piezometer Mirabad 

Average Precipitation (mm) 296.1 
Average River Discharge (m3/s) 17.85 

Average Groundwater Levels (m) 5.82 
Standard Deviation  of Precipitation 

(mm) 20.3 

Standard Deviation of River Discharge 

(m3/s) 18.84 

Standard Deviation of Groundwater 

Levels (m) 0.67 

 

In AR6, scenarios are categorized into two 

groups: Group 1- encompasses range of 

uncertainties associated with future radiative 

forcing trajectories critical for climate 

research, Integrated Assessment Models 

(IAM), and studies addressing Impacts 

Adaptation, and Vulnerability (IAV). Baseline 

scenarios in this group includes: SSP1-2.6: 

which presents the lowest radiative forcing 

scenario; SSP2-4.5: indicative of typical socio-

economic conditions with intermediate 

vulnerability; SSP5-8.5: representing a high-

end scenario focusing heavily on fossil fuel 

reliance and elevated energy consumption 

patterns (Estoque et al., 2020; Rogelj et al., 

2018). Group 2- includes hybrid scenarios 

extend beyond those in Group 1 to capture 

additional long-term dynamics, including two 

mitigation-oriented paths aimed at maintaining 

global average temperature increases below 

certain thresholds relative to pre-industrial 

levels, specifically below 1.5 degrees Celsius 

as well as alternatives involving very high 

emissions trajectories. 

This study employs data from 26 large-scale 

models presented in the Sixth Assessment 

Report specifically under three key SSP: 

SSP1-2.6, SSP2-4.5, and SSP5-8.5 to assess 

potential impacts relevant to the Siminehrood 

River Basin in West Azerbaijan Province using 
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data sourced from the Dashband Bukan 

meteorological station. 

 

2.2. Downscaling 

Unfortunately, general circulation models 

for local-scale studies have limitations due to 

their low resolution and large scale, and these 

models are unable to simulate small-scale 

climate changes (Wilby et al., 2003). In this 

research, various methodologies were utilized 

to downscale precipitation data from GCM 

models, namely BCSD (Bias Correction and 

Spatial Disaggregation), SDSM (Statistical 

Downscaling Model), and the LARS WG 7.0 

model. However, because the evaluation 

criteria for BCSD and SDSM were deemed 

unsatisfactory, the LARS WG 7.0 model was 

ultimately chosen for implementation 

(Sharifan et al., 2025).  

After downscaling the models, the 

evaluation criteria of the coefficient of 

determination (R2), Nash-Sutcliffe efficiency 

(NSE), root mean square error (RMSE), and 

residual sum coefficient (CRM) were used to 

select the best models. 

R2 =

[
 
 
 

∑ (Oi − Ōi)(pi − p)n
i=1

√∑ (Oi − Ōi)
2n

i=1
√∑ (pi − Ṕi)

2n
i=1 ]

 
 
 

  (1) 

𝑁𝑆𝐸 = 1 −
∑ |𝑂𝑖 − 𝑝𝑖|

2𝑛
𝑖=1

∑ |𝑂𝑖 − Ō𝑖|
2𝑛

𝑖=1

 (2) 

𝑅𝑀𝑆𝐸 = √
(𝑝𝑖 − 𝑂𝑖)

2

𝑛
 (3) 

𝐶𝑅𝑀 =
∑ ∑ 𝑝𝑖

𝑛
𝑖=1

𝑛
𝑖=1 𝑂𝑖

∑  𝑂𝑖
𝑛
𝑖=1

 (4) 

In the above equations, 𝑝
𝑖̅
 and 𝑂𝑖̅ represent 

the long-term average of the predicted and 

measured precipitation in the i-th month, 

respectively, and n represents the total number 

of months under study; that is, 12. The most 

optimal solution for the models will be created 

when RMSE and CRM tend to zero and R2 and 

NSE tend to one. 

 

2.3. Ranking and weighting of models 

After evaluating 26 climate models, ranking 

and weighting of climate models were used to 

convert the precipitation data into one time 

series and enter this data into the copula 

section. After weighting the models, a data 

series was obtained by multiplying the weights 

by the model data and calculating their sum for 

each of the climate scenarios. The weight of 

each model was obtained using equation 5. In 

this equation, 𝑅𝑖 is the rank of each model in 

the evaluation index and 𝑊𝑖  is the weight of 

each model (Chen et al., 2011). 

𝑊𝑖 =
𝑅𝑖

∑ 𝑅𝑖
𝑛
𝑖=1

 (5) 

 

2.4. Correlation estimation and marginal 

distribution selection 

The application of copula functions in 

analyzing the relationship between river 

discharge and groundwater levels involves 

several structured steps, starting with 

correlation assessment and moving through 

marginal distribution fitting, leading to copula 

selection. To begin, it’s essential to assess 

whether a correlation exists between the pairs 

of parameters precipitation- river discharge 

and river discharge- groundwater levels. For 

this purpose, Kendall's tau coefficient is 

employed due to its effectiveness in measuring 

ordinal association without being overly 

influenced by outliers. 

The formula for Kendall's tau coefficient is 

given by: 

𝜏 = (
𝑁

2
)∑ 𝑠𝑖𝑔𝑛

𝑖<𝑗

[(𝑥𝑖−𝑥𝑗) (𝑦
𝑖−

𝑦
𝑗
)] (6) 

In Equation 6, N is the number of data, 

sign(.) is the sign function, and x and y are the 

values of the pair of desired parameters. 

Once correlation has been confirmed 

through Kendall's tau, the next step involves 

selecting appropriate marginal distributions for 

each parameter. The goal here is to identify 

which statistical distribution best fits each 

dataset.  

Two statistical tests are commonly used for 

this purpose are Kolmogorov-Smirnov and 

Anderson-Darling tests. Both tests evaluate 

how well a proposed distribution matches 

observed data. If the p-values from these tests 

are significant at the 5% level, can accepted 

that particular distribution for modeling 

parameters (Nazeri Tahroudi et al., 2019). 

To fit the marginal distributions to the 

desired parameters, the EasyFit 5.6 model was 

used, in which the two evaluation criteria 

mentioned above were used. After confirming 

the correlation and selecting the best statistical 

distribution, copula functions can be used. 
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2.5. Copula functions 

Copula functions are mathematical 

constructs that enable the combination of 

marginal distributions of various random 

variables to form a multivariate distribution. 

The multivariate cumulative distribution 

function (CDF) can be expressed in terms of its 

univariate marginal CDFs along with the 

copula function. A multivariate copula is 

essentially the joint CDF of standard uniform 

random variables, capturing the dependence 

structure between the variables. For a copula 

𝐶: [0,1]2 → [0,1], it must satisfy specific 

properties, which are as follows: 

Boundary Conditions: 

𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0 , 𝐶(1, 𝑣) 

= 𝑣 , 𝐶(𝑢, 1) = 𝑢 
(7) 

Associativity Condition: 

If 𝑢1≥ 𝑣1  and  𝑢2≥ 𝑣2  and 𝑢1, 𝑢2, 𝑣1, 𝑣2 ϵ 

[0,1]  

𝐶(𝑢1, 𝑢2) + 𝐶(𝑣1, 𝑣2) − 𝐶(𝑢1, 𝑢2) 

−𝐶(𝑣1, 𝑣2) ≥ 0 
(8) 

Sklar's theorem serves as a fundamental 

principle in copula theory, stating that any n-

dimensional distribution function F can be 

expressed using a copula C as follows: 

𝐹(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1),… , (𝐹𝑛(𝑥𝑛)) (9) 

where 𝐹1,…, 𝐹𝑛 represent the multivariate 

distribution functions. If these multivariate 

distributions are continuous, the copula 

function C is unique and can be expressed in 

the following way: 

(𝑢1, … , 𝑢𝑛) = 𝐹(𝐹1
−1(𝑢1), … , 𝐹𝑛

−1(𝑢𝑛)) (10) 

where the quantile 𝐹𝑘−1 is defined as 

𝐹𝑘−1 = inf {𝑥 ∈ 𝑅|𝐹𝑘(𝑥) ≥ 𝑢𝑘)}. It can also 

be stated that if C is a copula function and 

𝐹1, … , 𝐹𝑛 are univariate distribution functions, 

then the function F is an n-dimensional 

distribution function with margins 𝐹1, … , 𝐹𝑛. 

The copulas are divided into different groups 

such as Archimedean, elliptic and extreme-

value, each of these groups includes different 

copulas. 

In the context of bivariate copula modeling, 

two correlated random variables X and Y are 

considered, which have respective marginal 

probability density functions 

𝑓𝑥 (𝑥; 𝑎1, 𝑎2, … , 𝑎𝑝) and 𝑓𝑦 (𝑦; 𝜆1, 𝜆2, … , 𝜆𝑟). 

Here, 𝑎1, 𝑎2, … , 𝑎𝑝 are parameters associated 

with the distribution of 𝑓𝑥 (𝑥), and 

 𝜆1, 𝜆2, … , 𝜆𝑟are parameters associated with 

the distribution of 𝑓𝑦 (𝑦). 

To estimate the parameters from n 

independent pairs of observations, the log 

likelihood function for X and Y is 

𝑙𝑛𝐿𝑥 (𝑥; 𝑎1, 𝑎2, … , 𝑎𝑝) and 

𝑙𝑛𝐿𝑦 (𝑦; 𝜆1, 𝜆2, … , 𝜆𝑟) are maximized 

individually in order to estimate the 

parameters. 

𝑎1, 𝑎2, … , 𝑎𝑝 and 𝜆1, 𝜆2, … , 𝜆𝑟 are the 

estimated parameters. The log likelihood 

function of the joint probability density 

function of functions 𝑓𝑋 𝑌 (𝑥 , 𝑦) is defined as 

follows: 

ln 𝐿(𝑥, 𝑦; 𝑎1
^, 𝑎2

^, … , 𝑎𝑝
^ , 𝜆1

^, 𝜆2
^ , … , 𝜆^, 𝜃) 

= ln 𝐿𝑐(𝑥, 𝑦; 𝐹𝑋(𝑥), 𝐹𝑌(𝑦), 𝜃) 

+ln 𝐿𝑋(ln 𝐿(𝑥; 𝑎1
^, 𝑎2

^, … , 𝑎𝑝
^)

+ 𝑙𝑛  𝐿𝑌(𝑦; 𝜆1
^, 𝜆2

^ , … , 𝜆𝑟
^ ) 

(11) 

In equation (11), the log likelihood function 

of the copula density function is 𝑙𝑛𝐿𝑐 . By 

placing the estimated values for 𝜆1, 𝜆2, … , 𝜆𝑟 

and 𝑎1, 𝑎2, … , 𝑎𝑝 in equation 5, the log 

likelihood function 𝑙𝑛𝐿 to calculate the 

estimated copula parameter θ ̂ is maximized. 

In this research, used of fitting 10 different 

copula functions to desired pair of parameters, 

aiming to create a suitable bivariate 

distribution that first must calculated the 

correlation between these parameters. To 

quantify the correlation between the 

parameters, the Kendall's tau statistic is 

employed. This non-parametric measure of 

correlation is particularly useful in the context 

of copulas. This statistic (equation 11) is used 

in all studies of copula functions (De Michele 

and Salvadori, 2003; Nazeri Tahroudi et al., 

2022a). 

To determine the best copula, the 

parameters of the copula function are obtained 

using the IFM method. The optimal copula is 

then selected by comparing the results of each 

copula with those of the empirical copula. For 

a joint two-dimensional copula, the empirical 

copula of the measured data (𝑢𝑖, 𝑣𝑖) is defined 

as follows: 

𝐶𝑒(𝑢𝑖 , 𝑣𝑖) =
1

𝑛
∑𝐼(

𝑄𝑖

𝑛 + 1
≤ 𝑢𝑖 ,

𝑃𝑖

𝑛 + 1
≤ 𝑣𝑖

𝑛

𝑖=1

) (12) 

In this equation, 𝐶𝑒 is the empirical copula, 

n is the number of measured data and 𝐼(𝐴) is 

the indicator variable of the logic expression 𝐴. 

If the expression 𝐴 is true, it will take the value 

of one and if it is false, it will take the value of 

zero. 𝑄𝑖 and 𝑃𝑖  are the ranks of the i-th 
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measured data corresponding to the desired 

pair of copulas. 

 

2.6.Goodness of fit tests for copulas 

In this research, Nash-Sutcliffe efficiency 

(NSE), root mean square error (RMSE) and 

BIAS evaluation criteria were used to select 

the best copula function. 

𝐵𝐼𝐴𝑆 =
∑ (𝑝𝑖 − 𝑂𝑖)

𝑛
𝑖=1

𝑛
 (13) 

In these equations, 𝑝𝑖̅ and 𝑂𝑖̅ are the average 

of the predicted and measured parameters in 

the i-th month and n is the number of data in 

each parameter, respectively. The best result 

for the selection of copula functions will be 

created when BIAS tend to zero. 

 
Table 2. Copula functions used in this research 

The domain of 𝜽 C(u,v) Family 

−𝟏 ≤ 𝜽 ≤ 𝟏 
𝑢𝑣

1 − 𝜃(1 − 𝑢)(1 − 𝑣)
 Ali-Mikhail-Haq (AMH) 

𝜽 ≥ 𝟎 (𝑢−𝜃 + 𝑣−𝜃 − 1)−1/𝜃 Clayton 

𝜽 ≠ 𝟎 −
1

𝜃
ln [1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
] Frank 

𝜽 ≥ 𝟎 𝑢𝑣 exp {[(−𝑙𝑛𝑢)−𝜃 + (−𝑙𝑛𝑣)−𝜃]
−

1
𝜃} Galambos 

𝜽 ≥ 𝟏 exp {−[(−𝑙𝑛𝑢)𝜃 + (−𝑙𝑛𝑣)𝜃]
1
𝜃} Gumbel-Hougaard (GH) 

𝜽 ≥ 𝟎 exp {−[(−𝑙𝑛𝑢)𝜃 + (−𝑙𝑛𝑣)𝜃]1/𝜃} Plackett 

−𝟏 ≤ 𝜽 ≤ 𝟏 

1

2

1

𝜃 − 1
{1 + (𝜃 − 1)(𝑢 + 𝑣) − [(1 + (𝜃 − 1)(𝑢 + 𝑣))2

− 4𝜃(𝜃 − 1)𝑢𝑣]
1
2} 

Farlie-Gumbel-Morgenstern (FGM) 

𝟎 < 𝜽 ≤ 𝟏 𝑢𝑣 𝑒𝑥𝑝{−𝜃(𝑙𝑜𝑔𝑢)(𝑙𝑜𝑔𝑣)} Gumbel-Barnett (GB) 

𝜽 ≥ 𝟏 

1

1 + [(
1
𝑢

− 1)𝜃 + (
1
𝑣

− 1)𝜃]1/𝜃
 A12 

𝜽 > 𝟏 1 − [(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃(1 − 𝑣)𝜃]1/𝜃 Joe 

 

2.7. Joint structure-based simulation 

For variable d copula: 

𝑢𝑑 = 𝐶𝑑|𝑑−1,…,1
−1 (𝑤𝑑|𝑢𝑑−1, … , 𝑢1) (14) 

To calculate the conditional distribution 

function in Equation 15, 𝐶𝑑|𝑑−1,…,1
−1  requires a 

copula pair structure that provides a repetitive 

expression of h functions for the conditional 

distribution function (Tahroudi et al., 2020). 

The h function for a two-dimensional 

copula with copula parameter 𝜃𝑖𝑗 is defined as 

follows: 

ℎ𝑖|𝑗 = (𝑢𝑖|𝑢𝑗; 𝜃𝑖𝑗):
𝜕

𝜕𝑢𝑗
∁𝑖𝑗(𝑢𝑖, 𝑢𝑗; 𝜃𝑖𝑗) (15) 

ℎ𝑗|𝑖 = (𝑢𝑗|𝑢𝑖; 𝜃𝑖𝑗):
𝜕

𝜕𝑢𝑖
∁𝑖𝑗(𝑢𝑖, 𝑢𝑗; 𝜃𝑖𝑗) 

(16) 

For simulation and prediction, first a 

conditional density diagram c(u,v) is drawn for 

one of the desired parameters. In this study, the 

groundwater level values are simulated under 

the influence of the desired river discharge 

values. So, for each river discharge, a diagram 

u, which is related to the groundwater level, is 

drawn. Then, the maximum value of c(u,v) in 

each diagram is selected and its corresponding 

values are calculated on the x-axis.  

The maximum values in the drawn 

diagrams are the groundwater level values that 

are influenced by the river discharge values 

(Nazeri Tahroudi et al., 2021b). 

 

3. Results and Discussion 

3.1. Evaluation of climate models 

As previously stated, 26 GCM models were 

utilized, included baseline period data from 

1988 to 2018 and future period data from 2031 

to 2050 for all three scenarios. After the 

evaluation of the 26 models using criteria such 

as R², NSE, RMSE, and CRM, a ranking of the 

models was done. The results of this ranking 

are illustrated in Table 3. It is indicated in this 

table that the MIROC6 model demonstrated 

the best performance in simulating 

precipitation data during the baseline period, 

aligning with findings by Li et al., (2022) and 

Tian et al., (2021). 

Following the ranking process, weights 

were assigned to the models. Out of the total of 

26 models evaluated, only 6 models 

(MIROC6, INM-CM5-0, FGOALS-g3, 

KACE-1-0-G, BCC-CSM2-MR and INM-

CM4-8) were given significant weights while 

nearly zero weight was concluded to the 

remaining models. For incorporation into the 

copula section, weights of these 6 models were 

multiplied by future period data for all three 
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scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) 

and thereafter their sum was calculated 

(Sharifan et al., 2025). 

 

3.2. Assessment of monthly and annual 

precipitation in the future period 

Figures 2 and 3 show the monthly and 

annual precipitation graphs in the three 

scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. 

Figure 2 illustrates that precipitation 

changes have fluctuations across different 

months, so that precipitation in some months 

decreases while others increase. 

However, a general trend indicates that in 

most months, future precipitation under the 

three scenarios (SSP1-2.6, SSP2-4.5, and 

SSP5-8.5) will decrease compared to measured 

historical data. This finding aligns with the 

research conducted by Abdolalizadeh et al. 

(2023). Specifically, during the months of 

May, June, July, and August, as well as 

September, October, November, December, 

and January, precipitation shows a decline 

relative to historical measurements in all three 

scenarios. Given that significant amounts of 

precipitation typically will occur in spring, 

autumn, and winter, it follows that annual 

precipitation is expected to decrease across all 

three scenarios, a conclusion supported by 

Figure 3. Figure 3 reveals that the greatest 

reduction in precipitation will occur under the 

pessimistic scenario (SSP5-8.5), while the 

least reduction related to the optimistic 

scenario (SSP1-2.6). These results consistent 

with findings from Ansari et al. (2022). 

 
Table 3. Performance of CMIP6 models for simulating precipitation in the baseline period at the Dashband 

Bukan synoptic station 
Model R2 RMSE (mm) NSE CRM Sum of ranks Final rank 

MIROC6 0.86 8.72 0.82 0.1 8 1 

INM-CM5-0 0.73 12.18 0.65 -0.12 15 2 

FGOALS-g3 0.9 17.81 0.43 -0.61 29 3 

KACE-1-0-G 0.4 17.62 0.47 0.11 30 4 

BCC-CSM2-MR 0.6 18.51 0.37 0.26 31 5 

INM-CM4-8 0.75 19.31 0.33 0.34 32 6 

CESM2 0.5 18.48 0.18 0.25 35 7 

CMCC-ESM2 0.51 21.16 -0.05 0.27 46 8 

MPI-ESM-1-2-HAM 0.42 18.43 0.17 0.45 48 9 

E3SM-2-0 0.74 24.02 -0.35 0.41 49 10 

MPI-ESM1-2-LR 0.47 22.78 -0.21 0.21 50 11 

GISS-E2-1-G 0.5 18.67 0.18 -0.75 52 12 

KIOST-ESM 0.55 19.4 0.12 -0.84 55 13 

MCM-UA-1-0 0.43 19.04 0.1 -0.82 61 14 

CAMS-CSM1-0 0.21 25.42 -0.51 0.12 62 15 

GFDL-ESM4 0.88 32.77 -1.6 0.51 63 16 

NESM3 0.2 25.98 -0.58 0.09 64 17 

MPI-ESM1-2-HR 0.45 29.35 -1.02 0.3 66 18 

ACCESS-ESM1-5 0.89 35.00 -1.96 0.54 67 19 

MRI-ESM2-0 0.64 34.33 -1.85 0.51 71 20 

ACCESS-CM2 0.34 29.52 -1.11 0.38 74 21 

NorESM2-LM 0.28 22.51 -0.23 -1.38 75 22 

CIESM 0.71 32.26 -1.44 -16 76 23 

CanESM5 0.36 25.54 -0.58 -2.8 81 24 

IPSL-CM6A-LR 0.52 47.10 -4.37 0.55 82 25 

E3SM-1-0 0.5 41.22 -2.98 0.56 84 26 
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Fig. 2. Comparison of mean monthly precipitation in the baseline period and the future period under the 

three scenarios 

 

 
Fig. 3. Comparison of mean annual precipitation in the baseline period and the future period under the three 

scenarios 

 

3.3. Results of the copula function 

analysis 

Initial steps involved deriving the marginal 

distribution functions for precipitation, river 

discharge, and groundwater level parameters 

using the EasyFit 5.6 software. Subsequently, 

the correlation between pair of parameters 

(precipitation-river discharge and river 

discharge-groundwater level) was investigated 

through Kendall's tau correlation coefficient. 

Finally, evaluation criteria were applied to 

identify the best copula functions. The results 

yielded from both Kolmogorov-Smirnov and 

Anderson-Darling tests indicated that 

precipitation follows a Lognormal distribution, 

river discharge adheres to a Gamma 

distribution, and groundwater level aligns with 

a Lognormal statistical distribution. 

Furthermore, Kendall's tau correlation 

coefficients for the pairs of parameters were 

calculated as 0.43 for precipitation-river 

discharge and 0.44 for river discharge-

groundwater level. These values show an 

acceptable correlation between each pair. 
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Previous studies, including those by De 

Michele and Salvadori (2003), Khashei Siuki 

et al., (2021), Nazeri Tahroudi et al., (2022), 

and Dastourani and Nazeri Tahroudi (2022b), 

have established that correlation values 

exceeding 0.4 are deemed appropriate for 

implementing copula-based models. The 

results pertaining to evaluation criteria aimed 

at determining the best copula function for 

these pair of parameters are presented in Tables 

4 and 5. 

 
Table 4. Results of goodness-of-fit test of copula functions for precipitation (mm) and river discharge (m3/s) 

Joe A12 GB FGM Plackett GH Galambos Frank Clayton AMH 
Evaluation 

criteria 
0.85 0.82 0.58 0.7 0.84 0.8 0.82 0.53 0.9 0.82 NSE 

0.1 0.12 0.18 0.13 0.11 0.12 0.12 0.19 0.09 0.12 RMSE 
0.1 0.11 0.17 0.13 0.1 0.12 0.11 0.18 0.08 0.11 BIAS 
2.08 1 0.1 1 5.23 1.4 0.73 -0.91 2.17 0.99 Teta 

 

Table 5. Results of goodness-of-fit test of copula functions for river discharge (m3/s) and groundwater level 

(m) 

Joe A12 GB FGM Plackett GH Galambos Frank Clayton AMH 
Evaluation 

criteria 

0.93 0.9 0.43 0.66 0.88 0.82 0.92 0.47 0.94 0.73 NSE 

0.07 0.07 0.21 0.16 0.09 0.12 0.08 0.21 0.07 0.15 RMSE 

0.06 0.08 0.19 0.15 0.09 0.11 0.07 0.18 0.06 0.13 BIAS 

7.1 8.75 0.1 1 20 1.95 20 -0.025 6.7 0.99 Teta 

 

3.4. Simulation and prediction using 

copula functions 

In this section, conditional density of copula 

functions has been utilized to simulate and 

predict river discharge and groundwater level 

parameters, while considering the influence of 

precipitation. The simulation results for both 

river discharge and groundwater level are 

illustrated on daily and monthly scales in 

Figures 4, 5, and 6. 

The simulation process commenced with 

the modeling of river discharge, which is 

directly influenced by precipitation. For this 

purpose, Clayton's copula function employed 

alongside its conditional density to accurately 

capture the relationship between these two 

variables (Sharifan et al., 2024). 
 

 
Fig. 4. Simulation of daily river discharge (m3/s) using Clayton's 2D copula 

 



Impact of Climate Change on River Discharge and …..                                                                                                 350 
   

 
Fig. 5. Simulation of monthly river discharge (m3/s) using Clayton's 2D copula 

 

 
Fig. 6. Simulation of groundwater level (m) using Clayton's 2D copula 

 

According to the simulation graphs, the 

measured and simulated river discharge and 

the measured and simulated groundwater level 

have good correlation on both daily and 

monthly scales. To estimate the efficiency of 

Clayton's copula in simulating river discharge 

and groundwater level, the evaluation criteria 

of NSE, RMSE, and R2 were used. The results 

of the evaluation criteria of river discharge and 

groundwater level on both daily and monthly 

scales are given in Tables 6 and 7. 

In this study, Tables 6 and 7 have been 

presented the performance of simulating river 

discharge and groundwater level. For river 

discharge, the Nash-Sutcliffe Efficiency (NSE) 

and R² values were calculated at 0.61, and 0.62 

on a daily scale, while on a monthly scale these 

values increased slightly to 0.62, and 0.63, 

respectively. In comparison, NSE and R² 

values for groundwater level simulation were 

calculated 0.67, and 0.68, respectively. These 

coefficients fall within acceptable limits, 

suggesting that simulations have good 

efficiency when utilizing Clayton's copula. 

 
Table 6. Evaluation of the efficiency of Clayton's 

copula in simulating river discharge (m3/s) on 

daily and monthly scales 
Time Scale NSE RMSE (m3/s) R2 

Daily 0.61 13.18 0.62 

Monthly 0.62 9.13 0.63 

 
Table 7. Evaluation of the efficiency of Clayton's 

copula in simulating groundwater level (m) on 

daily and monthly scales 
Time Scale NSE RMSE (m) R2 

Daily and Monthly 0.67 0.44 0.68 
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Furthermore, were assessed simulation 

accuracy using Root Mean Square Error 

(RMSE) as an evaluation criterion; results 

showed RMSE values of 13.18 m³/s for daily 

river discharge simulation and 9.13 m³/s for 

monthly river discharge assessments and 

RMSE value was concluded at 0.44 m for 

groundwater level. Given the range of 

measured values in both river discharge and 

groundwater levels, these RMSE confirm 

choice of Clayton's copula as the best copula. 

The results highlight that change in 

groundwater levels are significantly correlated 

with variations in river discharge over time due 

to their interdependent relationship within 

hydrological systems. To account for future 

conditions influenced by climate change, 

precipitation data affected by climate variables 

were incorporated into the simulation 

equations for predicting future river discharge 

and groundwater level values were predicted 

using predicted river discharge under scenarios 

SSP1-2.6, SSP2-4.5, and SSP5-8.5. The 

anticipated outcomes from river discharge and 

groundwater level that covering the period 

from 2031 to 2050 are depicted in Figures 7 

through10 at both monthly and annual scales. 

 

 
Fig. 7. Prediction of river discharge (m3/s) under the three scenarios on a monthly scale 

 

 
Fig. 8. Prediction of river discharge (m3/s) under the three scenarios on an annual scale 
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Fig. 9. Prediction of groundwater level (m) under the three scenarios on a monthly scale 

 

 
Fig. 10. Prediction of groundwater level (m) under the three scenarios on an annual scale 

 

As can be seen in Figures 7 and 9, 

fluctuations in river discharge and 

groundwater levels are anticipated under the 

considered scenarios considered. In certain 

months, decreases will be noted, while 

increases will be recorded in others. It is 

predicted that the groundwater level drop 

during May, June, July, August, November, 

and December will rise across all three 

scenarios when compared to the measured 

groundwater levels.  

This increase in groundwater level drop is 

attributed to the decline in river discharge 

during these months. The decrease in 

precipitation during this period results in 

reduced river discharge. In winter and spring 

seasons, decreases in groundwater level drop 

will be predict alongside predictions of the 

highest river discharge. 

According to Figures 8 and 10, it is 

projected that annual drop in groundwater 

level for the future period will rise across all 

three scenarios compared to measured values. 

Additionally, a decline is expected in annual 

changes concerning river discharge during 

future period. The predicted values for annual 

discharge from 2031 to 2050 under the three 

scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) 

are estimated at 14.94 m³/s, 12.02 m³/s, and 

11.24 m³/s, respectively; while estimates for 

groundwater levels are forecasted at 6.09 m, 

6.95 m, and 7.28 m, respectively. While 

measured values for both river discharge and 

groundwater level from the baseline period 
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have been calculated at 17.85 m³/s and 5.82 m, 

respectively. The outcomes of simulation 

regarding Siminehrood River's discharge align 

with findings presented by Abghari et al. 

(2023). 

 

4. Conclusion 

In the Siminehrood River Basin, the 

groundwater level is notably close to the 

earth's surface and shows a significant 

dependence on recharge from above. This 

recharge is influenced by both surface water 

flow and precipitation in the region. This study 

employs copula functions to simulate and 

predict the interactions between river 

discharge and groundwater levels while 

accounting for climate change impacts. 

Simulation using copula functions allows the 

accuracy of the selected copula functions in the 

analyses to be examined. In this research, 

copula functions along with their conditional 

densities, effectively simulated and predicted 

river discharge and groundwater levels in light 

of climatic changes affecting the area. The 

climate change analysis revealed a decline in 

annual precipitation across all three scenarios 

(SSP1-2.6, SSP2-4.5, and SSP5-8.5) 

indicating reductions of 5.1 mm, 31.5 mm, and 

34.8 mm, respectively.  

This decrease in precipitation is expected to 

lead to corresponding reductions in river 

discharge ranging between 2.9 m³/s to as much 

as 6.6 m³/s annually while simultaneously 

causing an increase in groundwater level drops 

estimated at 0.3 m to 1.5 m. Furthermore, 

correlation analysis using Kendall's tau 

statistic demonstrated a strong and acceptable 

relationship between precipitation-river 

discharge as well as between river discharge-

groundwater level in the Siminehrood River 

Basin, underscoring significant 

interdependencies among these hydrological 

factors influenced by climatic change. The 

study's findings highlight the effectiveness of 

using copula functions in modeling the 

hydrological dynamics of the Siminehrood 

River Basin.  

Among various copula functions, the 

Clayton copula function was identified as the 

best copula between precipitation-river 

discharge and river discharge-groundwater 

level. The simulation results underscore that 

climate change is expected to induce 

considerable alterations in both river discharge 

and groundwater levels by 2050. These 

significant changes are anticipated to result in 

severe drinking water shortages in urban areas 

as well as deficits for agricultural irrigation 

during dry seasons. By acknowledging the 

stochastic nature of hydrological phenomena 

and their interdependencies with various 

environmental parameters, this study 

reinforces that copula functions can enhance 

both analysis and simulation outcomes for 

hydrological values.  

The accuracy demonstrated by the copula-

based model during both simulation and 

prediction phases validates its applicability not 

only to meteorological and hydrological 

features but also across different time series 

data. One notable advantage of using copula 

functions is their flexibility across diverse 

geographical contexts. Since these functions 

focus on modeling statistical distributions 

rather than being constrained by specific 

climatic conditions, they maintain robust 

performance regardless of variations due to 

latitude, longitude, or other factors impacting 

data characteristics such as variance, 

skewness, or extreme value occurrences. This 

characteristic makes them a valuable tool for 

researchers aiming to understand complex 

hydrological systems influenced by varying 

climatic scenarios globally. 
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