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Abstract

The aim of this research is to simulate and predict the groundwater level in the Siminehrood River
Basin, which is situated south of Lake Urmia, Iran. This simulation was conducted using copula
functions while accounting for changes in river discharge influenced by climate change. A total of 26
large-scale CMIP6 models were utilized in this study. Precipitation data were downscaled and
simulated using the LARS WG 7.0 model. Subsequently, precipitation data for both the baseline
period (1988-2018) and the future period (2031-2050) were predicted for three scenarios: SSP1-2.6,
SSP2-4.5, and SSP5-8.5 through a weighted average method. Following the simulation and prediction
of precipitation in the Siminehrood River Basin, copula functions were employed to simulate and
predict both river discharge and groundwater levels. Prior to fitting the copula function, correlations
between pair of parameters precipitation-river discharge and river discharge-groundwater level were
examined using Kendall's tau coefticient; correlation values obtained were 0.43 for precipitation-river
discharge and 0.44 for river discharge-groundwater level. After selecting marginal distributions and
examining these correlations, ten different copula functions were fitted to each pair of parameters in
order to identify the most suitable model among them. The results from predicting precipitation
related to climate change indicated that annual precipitation under all three scenarios would decrease
compared to the measured precipitation. Annual precipitation reductions were projected to be 5.1 mm,
31.5 mm, and 34.8 mm under the scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. Analysis
through copula functions revealed that the Clayton copula provided optimal performance when
creating a joint distribution for these pair of parameters during simulation phases concerning river
discharge as well as groundwater levels and its accuracy was validated based on evaluation criteria
including NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square error), and R* (coefficient of
determination). Furthermore, it was concluded that reductions in annual precipitation would lead to
decreases in annual river discharge ranging from 2.9 m?/s to 6.6 m?*/s alongside an annual drop in
groundwater levels estimated between 0.3 m and 1.5 m.

Keywords: Climate change, Copula functions, Downscaling, Marginal distribution functions,
Siminehrood River.

1. Introduction

Three-dimensional atmosphere-ocean
general circulation models (AOGCMs) are
among the most reliable tools for predicting
climate change over future periods. As the
impacts of climate change are closely tied to
the outputs generated by these models (Chen et

al., 2019), enhancing their accuracy is crucial
for making more dependable predictions based
on findings presented in the Climate Change
Sixth Assessment Report (Eyring et al., 2016;
Stouffer, 2017). The global significance of
climate change necessitated the establishment
of the Intergovernmental Panel on Climate


http://www.wwjournal.ir/?_action=article&au=25499&_au=Abbas++Khashei-siuki
https://orcid.org/0000-0002-8085-9290
https://orcid.org/0000-0003-2814-0948
https://orcid.org/0000-0002-7098-4725
https://doi.org/10.22077/jwhr.2026.11000.1201

Impact of Climate Change on River Discharge and .....

340

Change (IPCC) in 1988, initiated by the World
Meteorological Organization (WMO) and
supported by the United Nations Environment
Program (UNEP).

The IPCC's mandate encompasses a
comprehensive assessment of all facets related
to this global phenomenon. Key variables such
as precipitation, temperature, and solar
radiation serve as primary inputs to natural
ecosystems, especially in basin environments,
where variations can significantly influence
productivity and structural integrity. Water
availability within a basin is particularly
sensitive and serves as a critical factor
concerning climate change from economic,
social, and environmental perspectives.
Consequently, examining how climate change
affects this vital resource is imperative.
AOGCMs simulate Earth's evolutionary
processes across various locations while
integrating interactions between atmospheric
conditions, ocean currents, sea ice formation,
and terrestrial landscapes. These models
effectively describe how these components
interact with one another to produce and
modify complex climatic variables. As such,
they play an essential role in simulating
climate dynamics over time and space, which
ultimately aids in predicting future climatic
scenarios (Su et al., 2016).

In summary, AOGCMs not only provide
insights into past climatic behaviors but also
project potential future changes under varying
greenhouse gas emission scenarios. Their
ability to represent intricate feedback
mechanisms within Earth's system makes them
indispensable tools for understanding potential
impacts on water resources, a crucial aspect
given ongoing concerns surrounding global
water scarcity exacerbated by changing
climates.

In recent years, the Coupled Model
Intercomparison Project Phase 6 (CMIP6) has
released a new set of coordinated climate
model simulations aimed at supporting the
Sixth Assessment Report (AR6). Assessments
from various regional studies have indicated
that CMIP6 models exhibit improvements over
their predecessors utilized in earlier reports
(Rivera and Arnould, 2019; Gusian et al.,
2020). These advancements have allowed for a
deeper examination of the impacts of climate
change on various climatic parameters.

Chu et al., (2017) conducted an analysis of
agricultural heat and precipitation resources in
northeastern China under two Representative
Concentration Pathways (RCPs), specifically
RCP4.5 and RCPS8.5, over the period from
2005 to 2099. Their results demonstrated
several significant  trends  regarding
temperature-precipitation distributions across
this region. Notably, they found that while
temperature consistently decreases from south
to north, an overall increase in temperatures
was projected across all areas studied. Under
RCP4.5, the annual mean temperature is
anticipated to reach approximately 9.67°C
while under RCPS8.5 this figure rises to about
10.66°C, indicating a pronounced warming
trend as emissions escalate.

Consequently, changes in other agricultural
heat resources are expected to correlate closely
with these rising temperatures. Particularly
noteworthy is that the rate of temperature
increases towards the late 21st century is
significantly more pronounced under the more
RCPS8.5 scenario. Regarding precipitation
trends during growing seasons in northern
China, there appears to be an upward
trajectory. However, this trend lacks statistical
significance and 1s characterized by high
annual variability moving forward into future
decades. In eastern regions of China,
projections  indicate an increase in
precipitation levels; conversely, western China
is expected to experience reductions in
precipitation.

Dunning et al.,, (2018) conducted an
assessment of climate change impacts on
rainfall patterns in Africa, specifically
focusing on the RCP8.5 emission scenario.
Their findings suggest a significant increase in
rainfall across North Africa, with an average
rise of over 100 mm by the end of the 21st
century. The study indicates that while the
volume of rainfall occurring on rainy days will
increase, there will be a corresponding
decrease in the total number of rainy days.

Qin et al., (2021) projected temperature and
precipitation changes for northwest China
under various Shared  Socioeconomic
Pathways (SSPs) coupled with Representative
Concentration Pathways (RCPs). The study
forecasts a rise in the annual mean temperature
for the long-term period (2081-2100) under
different scenarios by 1.4°C (SSP1-1.9), 1.9°C



341 Sharifan et al /Water Harvesting Research, 2025, 8(2):339-355

(SSP1-2.6), 3.3°C (SSP2-4.5), 5.5°C (SSP3-
7.0), 2.7°C (SSP4-3.4), 3.8°C (SSP4-6.0), and
6°C (SSP5-8.5). The study indicates that the
increase in annual rainfall in the long term will
be substantially greater than in both the near-
term (2021-2040) and mid-term (2041-2060).
The long-term annual rainfall increase will be
4.1% under the SSP1-1.9 scenario, 13.9%
under the SSP1-2.6 scenario, 28.4% under the
SSP2-4.5 scenario, 35.2% under the SSP3-7.0
scenario, 6.9% under the SSP4-3.4 scenario,
8.9% under the SSP4-3.4 scenario, 8.9% under
the SSP4-6.0 scenario, and 27.3% under the
SSP5-8.5 scenario compared to the base period
(1995-2014).

Shiru et al., (2022) provided an analysis of
climate change impacts on precipitation in East
Asia using CMIP6 models. The study indicates
that precipitation will vary between -32% and
+4% across various models for the years 2021-
2060. For period 2061-2100, predicted
changes become more severe, with projections
suggesting a range from -46.7% to +4.4%.
Under the SSP5-8.5 scenario, precipitation
changes during 2021-2060 are projected to be
between -40% and +6.6%. The CanESMS5
model specifically predicts precipitation
changes from -8.3% to +6.6%, indicating a
potential for more localized impacts.

Gebisa et al, (2023) conducted a
comprehensive evaluation of climate change
projections for the Baro River Basin using
simulations from the CMIP6 models. The
results showed that precipitation on an annual
scale will increase by 6% under the SSP2-4.5
scenario and 16.46% under the SSP5-8.5
scenario. Also, the average maximum
temperature on an annual scale will increase by
1.43°C and 1.81°C under the SSP2-4.5 and
SSP5-8.5 scenarios, respectively, and the
average minimum temperature on an annual
scale is predicted to increase by 1.96°C and
3.11°C under the SSP2-4.5 and SSP5-8.5
scenarios, respectively. Abbas et al., (2022)
conducted an assessment of precipitation
trends in Pakistan utilizing simulations from
the CMIP6 models under SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5 scenarios.

The study showed that summer
precipitation will increase compared to winter
in most scenarios. Annual precipitation will
also increase significantly compared to the
baseline period. There is a clear trend showing

that precipitation increase as one move from
lower-pressure scenarios (like SSP1-2.6) to
higher-pressure scenarios (such as SSP5-8.5).

The theory of copulas has emerged as a
powerful framework for understanding and
modeling the dependence structures among
random variables. Introduced by Sklar in 1959,
copulas allow researchers to link the margins
of univariate distributions to create a
comprehensive multivariate distribution. This
is particularly useful in fields where
understanding the relationship between
correlated variables is crucial.

A copula is a mathematical function that
links the individual marginal distribution
functions of correlated random variables,
allowing them to create a joint distribution
function. Sklar's theorem states that any
multivariate distribution can be represented
based on its marginal distributions and a
corresponding copula. The flexibility provided
by copulas to produce joint distributions has
led to the increasing use of this method in
various studies. Bai et al., (2020) conducted a
comprehensive analysis of groundwater level
frequency in the Yarkant River basin, utilizing
copula  functions to investigate the
interrelationships between groundwater levels
and various driving factors, including runoff
and surface water flow.

Their study was notable for its innovative
methodology, which combined data from 16
monitoring wells to assess how different
variables influenced groundwater levels. The
results indicated that groundwater exploitation
had the most pronounced negative impact on
groundwater levels. The analysis also revealed
that runoff and irrigation rates were inversely
related to groundwater levels.

Among the various copula types explored,
the Frank copula was identified as providing
the best fit. Wable and Jha (2018) evaluated the
effect of rainfall on groundwater level in West
India using Archimedean copula functions.
The results showed that Clayton copula
function is the best copula function between
the rainfall-groundwater level. They also
concluded that the method of copula functions
between the aforementioned variable pairs is
recommended as the best method in conditions
of data scarcity.

You et al., (2018) conducted an analysis of
the correlation between groundwater levels
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and various controlling factors in the Jinghui
Irrigation Area of Central China, employing
copula functions on annual time series data.
Among various copula functions evaluated, the
Frank copula was found to provide a
satisfactory description of the correlation
between groundwater levels and the
controlling factors, which included surface
water and precipitation.

Nazeri Tahroudi et al., (2021a) conducted a
comprehensive study to analyze groundwater
level changes in the Nazloochai Basin,
specifically focusing on the sub-basin area of
the Tapik Hydrometric Station during the
statistical period from 2003 to 2015. In this
study employed of meta-heuristic algorithms
to determine the optimal two-dimensional
copula functions. Among the estimation
methods compared, the maximum likelihood
method demonstrated best performance,
achieving a superiority ratio of 131% over the
other algorithms tested. The study highlighted
the Gumbel-Hougaard copula as the best
copula for the two-dimensional analysis of
deficiency signatures related to groundwater
levels.

The aim of this study is to create a copula-
based probabilistic model to assess the impact
of climate change on river discharge and
groundwater levels within the Siminehrood
River Basin. A key innovation of this research
lies in the application of the Intergovernmental
Panel on Climate Change (IPCC) Sixth
Assessment Report for estimating
precipitation. The study employs various
Archimedean copula functions, including
extreme-value, Farlie-Gumbel-Morgenstern
(FGM), and Plackett copulas, to facilitate
probabilistic predictions and simulations
regarding the effects of climate change on river
discharge and groundwater levels in the
Siminehrood River Basin. This approach
allows for a comprehensive understanding of
the interconnectedness of these hydrological
variables in response to changing climatic
conditions.

2. Materials and Methods

The Siminehrood River Basin, a crucial
sub-basin of Lake Urmia, is situated at a
geographical coordinate of 46.10° longitude
and 36.39° latitude in West Azerbaijan
Province, covering an area of approximately

2,090 square kilometers. The river is fed by
multiple tributaries as it flows westward
through Bukan city before ultimately reaching
Lake Urmia.

For this study, daily data on precipitation,
river discharge, and groundwater levels within
the Siminehrood River Basin were utilized.
Precipitation measurements were collected
using Dashband Bukan rain gauge station
selected based on entropy theory. River
discharge values were obtained from the
Dashband Bukan hydrometric station, one of
the oldest and most comprehensive stations in
the area, making it suitable for representing
total basin discharge (Nazeri Tahroudi et al.,
2019).

Groundwater levels (depth that is defined
from the Earth’s surface to the water table)
were monitored using a Mirabad piezometer;
this well was also selected based on entropy
theory to accurately reflect groundwater
conditions across the entire basin (Nazeri
Tahroudi et al., 2019). Data spans two
significant periods: a baseline period from
1988 to 2018 and a future period from 2031 to
2050. Specifically, variables such as
precipitation (mm), river discharge (m?*/s), and
groundwater level (m) will be assessed.

Figure 1 illustrates the geographical
locations of both the Dashband Bukan
hydrometric station and rain gauge station
alongside  relevant  mapping  details.
Additionally, statistical characteristics
pertaining to parameters are compiled in Table
1.

2.1. Radiative forcing scenarios

The Sixth Assessment Report (AR6) of the
Intergovernmental Panel on Climate Change
(IPCC)  introduces a  comprehensive
framework for analyzing the interactions
between climate change and socio-economic
factors through various scenarios that combine
Shared Socioeconomic Pathways (SSPs) and
greenhouse gas concentration trajectories.
These pathways include five distinct socio-
economic scenarios: 1- SSPI1: Sustainable
Development  (focused on  achieving
sustainable development goals). 2- SSP2:
Intermediate Policy Development (reflects
moderate progress in policy implementation).
3- SSP3: Regional  Competitiveness
(emphasizes  regional  disparities  and
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competitiveness). 4-SSP4: Inequality
(highlights issues related to inequality across
regions and populations). 5- SSP5: Fossil Fuel
Development (centers around aggressive fossil
fuel use and high energy consumption). These
socio-economic pathways are paired with
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levels of greenhouse gas radiative forcing,
allowing for an examination of how various
economic developments could influence
climate outcomes under different forcing
scenarios.

"I.
£] T i _
ﬁ . ‘Q : g
S b &
z
4 i
P 1
& f
:
o ] L
7.
ro L4 Ll L) L L] T L)
E- - P00 E SPO0UE | GPO0"E 20°0°07E
|
z | Legend z
s | L 2] -
g Rivers g
Lake Urmia
<4  Dashband Bukan Rain Gauge Station
X  Dashband BukanHydrometric Station Legend
g- [J Lake Urmia Basin ; CJiraN
fg‘o 1S30 6@ 9% 120 -;‘ Lake Urmia -
- Kilometers Lake Urmia Basin
‘5'0!0" E “'010" E 47"0"0" E HP00VE 46°0°0"E 45°0'0"E

Fig. 1. The geographical location of the Dashband Bukan hydrometric and rain gauge stations

Table 1. Statistical characteristics of the
parameters examined on an annual scale

. . Dashband
Hydrometric Station Bukan
. . Dashband
Rain Gauge Station Bukan
Piezometer Mirabad
Average Precipitation (mm) 296.1
Average River Discharge (m?/s) 17.85
Average Groundwater Levels (m) 5.82
Standard Deviation of Precipitation
20.3
(mm)
Standard Deviation of River Discharge
3 18.84
(m’/s)
Standard Deviation of Groundwater
0.67
Levels (m)

In ARG, scenarios are categorized into two
groups: Group 1- encompasses range of
uncertainties associated with future radiative
forcing trajectories critical for climate
research, Integrated Assessment Models
(IAM), and studies addressing Impacts
Adaptation, and Vulnerability (IAV). Baseline
scenarios in this group includes: SSP1-2.6:

which presents the lowest radiative forcing
scenario; SSP2-4.5: indicative of typical socio-
economic conditions with intermediate
vulnerability; SSP5-8.5: representing a high-
end scenario focusing heavily on fossil fuel
reliance and elevated energy consumption
patterns (Estoque et al., 2020; Rogelj et al.,
2018). Group 2- includes hybrid scenarios
extend beyond those in Group 1 to capture
additional long-term dynamics, including two
mitigation-oriented paths aimed at maintaining
global average temperature increases below
certain thresholds relative to pre-industrial
levels, specifically below 1.5 degrees Celsius
as well as alternatives involving very high
emissions trajectories.

This study employs data from 26 large-scale
models presented in the Sixth Assessment
Report specifically under three key SSP:
SSP1-2.6, SSP2-4.5, and SSP5-8.5 to assess
potential impacts relevant to the Siminehrood
River Basin in West Azerbaijan Province using
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data sourced from the Dashband Bukan
meteorological station.

2.2. Downscaling

Unfortunately, general circulation models
for local-scale studies have limitations due to
their low resolution and large scale, and these
models are unable to simulate small-scale
climate changes (Wilby et al., 2003). In this
research, various methodologies were utilized
to downscale precipitation data from GCM
models, namely BCSD (Bias Correction and
Spatial Disaggregation), SDSM (Statistical
Downscaling Model), and the LARS WG 7.0
model. However, because the evaluation
criteria for BCSD and SDSM were deemed
unsatisfactory, the LARS WG 7.0 model was
ultimately chosen for implementation
(Sharifan et al., 2025).

After downscaling the models, the
evaluation criteria of the coefficient of
determination (R?), Nash-Sutcliffe efficiency
(NSE), root mean square error (RMSE), and
residual sum coefficient (CRM) were used to
select the best models.

£1(0; =0 (i — p) }

R? = (1)
|VEm 0 — 007 3o, (pi — B)]

NSE =1- Zl'g—jg'l )

RMSE = (p"_n—a")z 3)

CRM = % “4)

In the above equations, p, and 0; represent
the long-term average of the predicted and
measured precipitation in the i-th month,
respectively, and n represents the total number
of months under study; that is, 12. The most
optimal solution for the models will be created
when RMSE and CRM tend to zero and R? and
NSE tend to one.

2.3. Ranking and weighting of models

After evaluating 26 climate models, ranking
and weighting of climate models were used to
convert the precipitation data into one time
series and enter this data into the copula
section. After weighting the models, a data
series was obtained by multiplying the weights
by the model data and calculating their sum for
each of the climate scenarios. The weight of

each model was obtained using equation 5. In
this equation, R; is the rank of each model in
the evaluation index and W, is the weight of

each model (Chen et al., 2011).
R.

Wi = n R (5)

i=1"

2.4. Correlation estimation and marginal
distribution selection

The application of copula functions in
analyzing the relationship between river
discharge and groundwater levels involves
several structured steps, starting with
correlation assessment and moving through
marginal distribution fitting, leading to copula
selection. To begin, it’s essential to assess
whether a correlation exists between the pairs
of parameters precipitation- river discharge
and river discharge- groundwater levels. For
this purpose, Kendall's tau coefficient is
employed due to its effectiveness in measuring
ordinal association without being overly
influenced by outliers.

The formula for Kendall's tau coefficient is
given by:

T= (g) 2i<isign [(xi_x]-) (yl._yj)] (6)

In Equation 6, N is the number of data,
sign(.) is the sign function, and x and y are the
values of the pair of desired parameters.

Once correlation has been confirmed
through Kendall's tau, the next step involves
selecting appropriate marginal distributions for
each parameter. The goal here is to identify
which statistical distribution best fits each
dataset.

Two statistical tests are commonly used for
this purpose are Kolmogorov-Smirnov and
Anderson-Darling tests. Both tests evaluate
how well a proposed distribution matches
observed data. If the p-values from these tests
are significant at the 5% level, can accepted
that particular distribution for modeling
parameters (Nazeri Tahroudi et al., 2019).

To fit the marginal distributions to the
desired parameters, the EasyFit 5.6 model was
used, in which the two evaluation criteria
mentioned above were used. After confirming
the correlation and selecting the best statistical
distribution, copula functions can be used.
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2.5. Copula functions

Copula functions are mathematical
constructs that enable the combination of
marginal distributions of various random
variables to form a multivariate distribution.
The multivariate cumulative distribution
function (CDF) can be expressed in terms of its
univariate marginal CDFs along with the
copula function. A multivariate copula is
essentially the joint CDF of standard uniform
random variables, capturing the dependence
structure between the variables. For a copula
C:[0,1]> - [0,1], it must satisfy specific
properties, which are as follows:

Boundary Conditions:
C(u,0)=C(0,v) =0,C(1,v) 7
=v,C(u,l)=u

Associativity Condition:
Ifu;>v; and u,>v, and uy, uy, V1, vy €
[0,1]
C(ul'uZ) + C(Ul, UZ) - C(u1'u2) (8)
—C(v1,v2) =20
Sklar's theorem serves as a fundamental
principle in copula theory, stating that any n-
dimensional distribution function F can be
expressed using a copula C as follows:
F(xlt rxn) = C(Fl(xl)r T (Fn(xn)) (9)
where F;,..., F, represent the multivariate
distribution functions. If these multivariate
distributions are continuous, the copula
function C is unique and can be expressed in
the following way:
(g, oo ttn) = F(FT uy), o, B (1)) (10)
where the quantile Fj,_; is defined as
F._1 = inf {x € R|F,(x) = u,)}. It can also
be stated that if C is a copula function and
Fi, ..., F, are univariate distribution functions,
then the function F is an n-dimensional
distribution function with margins Fi, ..., F;,.
The copulas are divided into different groups
such as Archimedean, elliptic and extreme-
value, each of these groups includes different
copulas.
In the context of bivariate copula modeling,
two correlated random variables X and Y are
considered, which have respective marginal

probability density functions
fx (x; aq, a,, ...,ap) and f, (¥; 41,42, ..., ;).
Here, a4, ay, ..., a, are parameters associated
with  the distribution of f, (x), and

A, Ay, ..., Ayare parameters associated with
the distribution of £, ().

To estimate the parameters from n
independent pairs of observations, the log
likelihood function for X and Y is
InLy (x; ay,ay, ..., ap) and
InLy, (y; A1, 42, s Ay) are maximized
individually in order to estimate the
parameters.

ay,dy, ...,ap and A4, 4;,.., A, are the
estimated parameters. The log likelihood
function of the joint probability density
function of functions fyy (x,y) is defined as
follows:

InL(x,y; ai, ag, - a;,/li,/lg, A 0)
zlnLc(x'y;Fx(iC):fy(Y)»H) (11)
+In Ly (In L(x; a3, as, ..., ap)

+In Ly(y; 21,45, o, A7)

In equation (11), the log likelihood function
of the copula density function is [nL.. By
placing the estimated values for A4, 4,, ..., 4,
and a,,dy,..,apin equation 5, the log
likelihood function [nL to calculate the
estimated copula parameter 8 is maximized.

In this research, used of fitting 10 different
copula functions to desired pair of parameters,
aiming to create a suitable bivariate
distribution that first must calculated the
correlation between these parameters. To
quantify the correlation between the
parameters, the Kendall's tau statistic is
employed. This non-parametric measure of
correlation is particularly useful in the context
of copulas. This statistic (equation 11) is used
in all studies of copula functions (De Michele
and Salvadori, 2003; Nazeri Tahroudi et al.,
2022a).

To determine the best copula, the
parameters of the copula function are obtained
using the IFM method. The optimal copula is
then selected by comparing the results of each
copula with those of the empirical copula. For
a joint two-dimensional copula, the empirical
copula of the measured data (u;, v;) is defined
as follows:

Colunv) = - Z Clhsu—sw  (12)

In this equatlon, C, is the empirical copula,
n is the number of measured data and /(4) is
the indicator variable of the logic expression A.
If the expression 4 is true, it will take the value
of one and if it is false, it will take the value of
zero. Q; and P; are the ranks of the i-th
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measured data corresponding to the desired BIAS = ri(pi —0) (13)
pair of copulas. - n

2.6.Goodness of fit tests for copulas

In this research, Nash-Sutcliffe efficiency
(NSE), root mean square error (RMSE) and
BIAS evaluation criteria were used to select
the best copula function.

In these equations, P, and O, are the average
of the predicted and measured parameters in
the i-th month and # is the number of data in
each parameter, respectively. The best result
for the selection of copula functions will be
created when BIAS tend to zero.

Table 2. Copula functions used in this research

Family C(u,v) The domain of 6
uv
Ali-Mikhail-Haq (AMH) 1-6(1-w)(1l-v) -1<6<1
Clayton Wl +v9-—1)"ve 6=>0
1 (6_9“ - 1)(6‘9” - 1)
Frank __ 0+0
7 In[1+ e 1]
Galambos uv exp {[(=lnu)~? + (=lnv)~0] 78} 620
i
Gumbel-Hougaard (GH) exp {—[(—=Inw)? + (—inv)?16} 60=>1
Plackett exp {—[(—lnw)? + (—lnv)°]¥/%} 60=0
1 1
——— {1+ @ -Du+v)—[1+ 0 - 1D +7v))?
Farlie-Gumbel-Morgenstern (FGM) 26— 1{ ( X )~ ¢ L ( X ) 1<6<1
—406(0 — Duv]z}
Gumbel-Barnett (GB) uv exp{—6(logu)(logv)} 0<6<1
1
Al2 0>1
L+ [G = D + G — DP9
Joe 1-[A-w+A-v)? -1 -wla-v?]/° 0>1

2.7. Joint structure-based simulation
For variable d copula:
Ug = C¢1_|}1—1,...,1(Wd|ud—1; e, Ug) (14)
To calculate the conditional distribution
function in Equation 15, Cgz5_, ; requires a
copula pair structure that provides a repetitive
expression of h functions for the conditional
distribution function (Tahroudi et al., 2020).
The h function for a two-dimensional
copula with copula parameter 6;; is defined as
follows:
0
hiyy = (wilw; 0;7): a_ujc” (o uj;05)  (15)
9]
hjii = (uyus; 9ij):a_mcif(“i'“ji 6:j) (16)
For simulation and prediction, first a
conditional density diagram c(u,v) is drawn for
one of the desired parameters. In this study, the
groundwater level values are simulated under
the influence of the desired river discharge
values. So, for each river discharge, a diagram
u, which is related to the groundwater level, is
drawn. Then, the maximum value of c(u,v) in
each diagram is selected and its corresponding
values are calculated on the x-axis.
The maximum values in the drawn
diagrams are the groundwater level values that

are influenced by the river discharge values
(Nazeri Tahroudi et al., 2021b).

3. Results and Discussion

3.1. Evaluation of climate models

As previously stated, 26 GCM models were
utilized, included baseline period data from
1988 to 2018 and future period data from 2031
to 2050 for all three scenarios. After the
evaluation of the 26 models using criteria such
as R?, NSE, RMSE, and CRM, a ranking of the
models was done. The results of this ranking
are illustrated in Table 3. It is indicated in this
table that the MIROC6 model demonstrated
the best performance in simulating
precipitation data during the baseline period,
aligning with findings by Li et al., (2022) and
Tian et al., (2021).

Following the ranking process, weights
were assigned to the models. Out of the total of
26 models evaluated, only 6 models
(MIROC6, INM-CM5-0, FGOALS-g3,
KACE-1-0-G, BCC-CSM2-MR and INM-
CM4-8) were given significant weights while
nearly zero weight was concluded to the
remaining models. For incorporation into the
copula section, weights of these 6 models were
multiplied by future period data for all three
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scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5)
and thereafter their sum was calculated
(Sharifan et al., 2025).

3.2. Assessment of monthly and annual

precipitation in the future period

Figures 2 and 3 show the monthly and
annual precipitation graphs in the three
scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5.

Figure 2 illustrates that precipitation
changes have fluctuations across different
months, so that precipitation in some months
decreases while others increase.

However, a general trend indicates that in
most months, future precipitation under the
three scenarios (SSP1-2.6, SSP2-4.5, and
SSP5-8.5) will decrease compared to measured
historical data. This finding aligns with the

research conducted by Abdolalizadeh et al.
(2023). Specifically, during the months of
May, June, July, and August, as well as
September, October, November, December,
and January, precipitation shows a decline
relative to historical measurements in all three
scenarios. Given that significant amounts of
precipitation typically will occur in spring,
autumn, and winter, it follows that annual
precipitation is expected to decrease across all
three scenarios, a conclusion supported by
Figure 3. Figure 3 reveals that the greatest
reduction in precipitation will occur under the
pessimistic scenario (SSP5-8.5), while the
least reduction related to the optimistic
scenario (SSP1-2.6). These results consistent
with findings from Ansari et al. (2022).

Table 3. Performance of CMIP6 models for simulating precipitation in the baseline period at the Dashband
Bukan synoptic station

Model R? RMSE (mm) NSE CRM Sum of ranks  Final rank
MIROC6 0.86 8.72 0.82 0.1 8 1
INM-CMS5-0 0.73 12.18 0.65 -0.12 15 2
FGOALS-g3 0.9 17.81 0.43 -0.61 29 3
KACE-1-0-G 0.4 17.62 0.47 0.11 30 4
BCC-CSM2-MR 0.6 18.51 0.37 0.26 31 5
INM-CM4-8 0.75 19.31 0.33 0.34 32 6
CESM2 0.5 18.48 0.18 0.25 35 7
CMCC-ESM2 0.51 21.16 -0.05 0.27 46 8
MPI-ESM-1-2-HAM  0.42 18.43 0.17 0.45 48 9
E3SM-2-0 0.74 24.02 -0.35 0.41 49 10
MPI-ESM1-2-LR 0.47 22.78 -0.21 0.21 50 11
GISS-E2-1-G 0.5 18.67 0.18 -0.75 52 12
KIOST-ESM 0.55 19.4 0.12 -0.84 55 13
MCM-UA-1-0 0.43 19.04 0.1 -0.82 61 14
CAMS-CSM1-0 0.21 2542 -0.51 0.12 62 15
GFDL-ESM4 0.88 32.77 -1.6 0.51 63 16
NESM3 0.2 25.98 -0.58 0.09 64 17
MPI-ESM1-2-HR 0.45 29.35 -1.02 0.3 66 18
ACCESS-ESM1-5 0.89 35.00 -1.96 0.54 67 19
MRI-ESM2-0 0.64 34.33 -1.85 0.51 71 20
ACCESS-CM2 0.34 29.52 -1.11 0.38 74 21
NorESM2-LM 0.28 22.51 -0.23 -1.38 75 22
CIESM 0.71 32.26 -1.44 -16 76 23
CanESM5 0.36 25.54 -0.58 -2.8 81 24
IPSL-CM6A-LR 0.52 47.10 -4.37 0.55 82 25
E3SM-1-0 0.5 41.22 -2.98 0.56 84 26
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Fig. 2. Comparison of mean monthly precipitation in the baseline period and the future period under the
three scenarios

300

Precipitation (mm)

240
SSP1-2.6

290
280
270
260
250 I

SSP2-4.5
Scenario

SSP5-8.5 Measured

Fig. 3. Comparison of mean annual precipitation in the baseline period and the future period under the three
scenarios

3.3. Results of the copula function
analysis

Initial steps involved deriving the marginal
distribution functions for precipitation, river
discharge, and groundwater level parameters
using the EasyFit 5.6 software. Subsequently,
the correlation between pair of parameters
(precipitation-river ~ discharge and river
discharge-groundwater level) was investigated
through Kendall's tau correlation coefficient.
Finally, evaluation criteria were applied to
identify the best copula functions. The results

yielded from both Kolmogorov-Smirnov and
Anderson-Darling  tests indicated that
precipitation follows a Lognormal distribution,
river discharge adheres to a Gamma
distribution, and groundwater level aligns with
a  Lognormal  statistical  distribution.
Furthermore, Kendall's tau correlation
coefficients for the pairs of parameters were
calculated as 0.43 for precipitation-river
discharge and 0.44 for river discharge-
groundwater level. These values show an
acceptable correlation between each pair.
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Previous studies, including those by De
Michele and Salvadori (2003), Khashei Siuki
et al., (2021), Nazeri Tahroudi et al., (2022),
and Dastourani and Nazeri Tahroudi (2022b),
have established that correlation values
exceeding 0.4 are deemed appropriate for

implementing copula-based models. The
results pertaining to evaluation criteria aimed
at determining the best copula function for
these pair of parameters are presented in Tables
4 and 5.

Table 4. Results of goodness-of-fit test of copula functions for precipitation (mm) and river discharge (m?%/s)

E\;;l:ztiz)n AMH Clayton Frank Galambos GH Plackett FGM GB Al2 Joe
NSE 0.82 0.9 0.53 0.82 0.8 0.84 0.7 0.58 0.82 0.85
RMSE 0.12 0.09 0.19 0.12 0.12 0.11 0.13 0.18 0.12 0.1
BIAS 0.11 0.08 0.18 0.11 0.12 0.1 0.13 0.17 0.11 0.1
Teta 0.99 2.17 -0.91 0.73 1.4 5.23 1 0.1 1 2.08

Table 5. Results of goodness-of-fit test of copula functions for river discharge (m?/s) and groundwater level

_ (m)
EV;};‘;?:“ AMH  Clayton  Frank  Galambos =~ GH  Plackett FGM  GB  Al2  Joe
NSE 0.73 0.94 0.47 0.92 0.82 0.88 0.66 043 09 093
RMSE 0.15 0.07 0.21 0.08 0.12 0.09 0.16 021 007 007
BIAS 0.13 0.06 0.18 0.07 0.11 0.09 0.15 0.9 008  0.06
Teta 0.99 6.7 -0.025 20 1.95 20 1 0.1 875 7.1

3.4. Simulation and prediction using
copula functions

In this section, conditional density of copula
functions has been utilized to simulate and
predict river discharge and groundwater level
parameters, while considering the influence of
precipitation. The simulation results for both
river discharge and groundwater level are
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illustrated on daily and monthly scales in
Figures 4, 5, and 6.

The simulation process commenced with
the modeling of river discharge, which is
directly influenced by precipitation. For this
purpose, Clayton's copula function employed
alongside its conditional density to accurately
capture the relationship between these two
variables (Sharifan et al., 2024).
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Fig. 4. Simulation of daily river discharge (m?/s) using Clayton's 2D copula
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Fig. 5. Simulation of monthly river discharge (m?/s) using Clayton's 2D copula
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Fig. 6. Simulation of groundwater level (m) using Clayton's 2D copula

According to the simulation graphs, the
measured and simulated river discharge and
the measured and simulated groundwater level
have good correlation on both daily and
monthly scales. To estimate the efficiency of
Clayton's copula in simulating river discharge
and groundwater level, the evaluation criteria
of NSE, RMSE, and R? were used. The results
of the evaluation criteria of river discharge and
groundwater level on both daily and monthly
scales are given in Tables 6 and 7.

In this study, Tables 6 and 7 have been
presented the performance of simulating river
discharge and groundwater level. For river
discharge, the Nash-Sutcliffe Efficiency (NSE)
and R? values were calculated at 0.61, and 0.62
on a daily scale, while on a monthly scale these
values increased slightly to 0.62, and 0.63,
respectively. In comparison, NSE and R?

values for groundwater level simulation were
calculated 0.67, and 0.68, respectively. These
coefficients fall within acceptable limits,
suggesting that simulations have good
efficiency when utilizing Clayton's copula.

Table 6. Evaluation of the efficiency of Clayton's
copula in simulating river discharge (m?*/s) on
daily and monthly scales
R? RMSE (m?*s) NSE  Time Scale

0.62 13.18 0.61 Daily
0.63 9.13 0.62  Monthly

Table 7. Evaluation of the efficiency of Clayton's
copula in simulating groundwater level (m) on

daily and monthly scales
R? RMSE (m) NSE Time Scale
0.68 0.44 0.67 Daily and Monthly
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Furthermore, were assessed simulation
accuracy using Root Mean Square Error
(RMSE) as an evaluation criterion; results
showed RMSE values of 13.18 m?*/s for daily
river discharge simulation and 9.13 m?®/s for
monthly river discharge assessments and
RMSE value was concluded at 0.44 m for
groundwater level. Given the range of
measured values in both river discharge and
groundwater levels, these RMSE confirm
choice of Clayton's copula as the best copula.
The results highlight that change in
groundwater levels are significantly correlated
with variations in river discharge over time due
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to their interdependent relationship within
hydrological systems. To account for future
conditions influenced by climate change,
precipitation data affected by climate variables
were incorporated into the simulation
equations for predicting future river discharge
and groundwater level values were predicted
using predicted river discharge under scenarios
SSP1-2.6, SSP2-4.5, and SSP5-8.5. The
anticipated outcomes from river discharge and
groundwater level that covering the period
from 2031 to 2050 are depicted in Figures 7
through10 at both monthly and annual scales.
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Fig. 7. Prediction of river discharge (m?/s) under the three scenarios on a monthly scale
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Fig. 8. Prediction of river discharge (m?/s) under the three scenarios on an annual scale
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Fig. 9. Prediction of groundwater level (m) under the three scenarios on a monthly scale
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Fig. 10. Prediction of groundwater level (m) under the three scenarios on an annual scale

As can be seen in Figures 7 and 9,
fluctuations in  river discharge and
groundwater levels are anticipated under the
considered scenarios considered. In certain
months, decreases will be noted, while
increases will be recorded in others. It is
predicted that the groundwater level drop
during May, June, July, August, November,
and December will rise across all three
scenarios when compared to the measured
groundwater levels.

This increase in groundwater level drop is
attributed to the decline in river discharge
during these months. The decrease in
precipitation during this period results in
reduced river discharge. In winter and spring
seasons, decreases in groundwater level drop

will be predict alongside predictions of the
highest river discharge.

According to Figures 8 and 10, it is
projected that annual drop in groundwater
level for the future period will rise across all
three scenarios compared to measured values.
Additionally, a decline is expected in annual
changes concerning river discharge during
future period. The predicted values for annual
discharge from 2031 to 2050 under the three
scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5)
are estimated at 14.94 m3/s, 12.02 m3/s, and
11.24 m?/s, respectively; while estimates for
groundwater levels are forecasted at 6.09 m,
6.95 m, and 7.28 m, respectively. While
measured values for both river discharge and
groundwater level from the baseline period
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have been calculated at 17.85 m3/s and 5.82 m,
respectively. The outcomes of simulation
regarding Siminehrood River's discharge align
with findings presented by Abghari et al.
(2023).

4. Conclusion

In the Siminehrood River Basin, the
groundwater level is notably close to the
earth's surface and shows a significant
dependence on recharge from above. This
recharge is influenced by both surface water
flow and precipitation in the region. This study
employs copula functions to simulate and
predict the interactions between river
discharge and groundwater levels while
accounting for climate change impacts.
Simulation using copula functions allows the
accuracy of the selected copula functions in the
analyses to be examined. In this research,
copula functions along with their conditional
densities, effectively simulated and predicted
river discharge and groundwater levels in light
of climatic changes affecting the area. The
climate change analysis revealed a decline in
annual precipitation across all three scenarios
(SSP1-2.6, SSP2-4.5, and SSP5-8.5)
indicating reductions of 5.1 mm, 31.5 mm, and
34.8 mm, respectively.

This decrease in precipitation is expected to
lead to corresponding reductions in river
discharge ranging between 2.9 m?/s to as much
as 6.6 m?*s annually while simultaneously
causing an increase in groundwater level drops
estimated at 0.3 m to 1.5 m. Furthermore,
correlation analysis using Kendall's tau
statistic demonstrated a strong and acceptable
relationship ~ between  precipitation-river
discharge as well as between river discharge-
groundwater level in the Siminehrood River
Basin, underscoring significant
interdependencies among these hydrological
factors influenced by climatic change. The
study's findings highlight the effectiveness of
using copula functions in modeling the
hydrological dynamics of the Siminehrood
River Basin.

Among various copula functions, the
Clayton copula function was identified as the
best copula between precipitation-river
discharge and river discharge-groundwater
level. The simulation results underscore that
climate change 1is expected to induce

considerable alterations in both river discharge
and groundwater levels by 2050. These
significant changes are anticipated to result in
severe drinking water shortages in urban areas
as well as deficits for agricultural irrigation
during dry seasons. By acknowledging the
stochastic nature of hydrological phenomena
and their interdependencies with various
environmental  parameters, this  study
reinforces that copula functions can enhance
both analysis and simulation outcomes for
hydrological values.

The accuracy demonstrated by the copula-
based model during both simulation and
prediction phases validates its applicability not
only to meteorological and hydrological
features but also across different time series
data. One notable advantage of using copula
functions is their flexibility across diverse
geographical contexts. Since these functions
focus on modeling statistical distributions
rather than being constrained by specific
climatic conditions, they maintain robust
performance regardless of variations due to
latitude, longitude, or other factors impacting
data characteristics such as variance,
skewness, or extreme value occurrences. This
characteristic makes them a valuable tool for
researchers aiming to understand complex
hydrological systems influenced by varying
climatic scenarios globally.
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