Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., & Mirabbasi, R. (2017). Regional bivariate modeling of droughts using L-comoments and copulas. Stochastic Environmental Research and Risk Assessment, 31, 1199-1210.
Ahangi, G., Khalili, K., & Nazeri Tahroudi, M. (2023). Frequency analysis and joint simulation of qualitative variables of river flow using copula functions. Water Harvesting Research, 5(1): 131-143.
Chebana, F., & Ouarda, T. B. (2009). Index flood–based multivariate regional frequency analysis. Water Resources Research, 45(10).
Chen, L., Singh, V. P., Shenglian, G., Hao, Z., & Li, T. (2012). Flood coincidence risk analysis using multivariate copula functions. Journal of Hydrologic Engineering, 17(6), 742-755.
Dastourani, M., & Nazeri Tahroudi, M. (2022). Toward coupling of groundwater drawdown and pumping time in a constant discharge. Applied Water Science, 12(4), 74.
De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 50-57.
Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water resources research, 40(1).
Genest, C., Favre, A. C., Béliveau, J., & Jacques, C. (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 43(9).
Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press
Kao, S. C., & Govindaraju, R. S. (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2).
Khashei, A., Shahidi, A., Nazeri-Tahroudi, M., & Ramezani, Y. (2022). Bivariate simulation and joint analysis of reference evapotranspiration using copula functions. Iranian Journal of Irrigation & Drainage, 16(3), 639-656.
Khashei‐Siuki, A., Shahidi, A., Ramezani, Y., & Nazeri Tahroudi, M. (2021). Simulation of potential evapotranspiration values based on vine copula. Meteorological Applications, 28(5), e2027.
Mirabbasi, R., Anagnostou, E. N., Fakheri-Fard, A., Dinpashoh, Y., & Eslamian, S. (2013). Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. Journal of Hydrology, 492, 35-48.
Mirabbasi, R., Fakheri-Fard, A., & Dinpashoh, Y. (2012). Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108(1-2), 191-206.
Mirakbari, M., Ganji, A., & Fallah, S. R. (2010). Regional bivariate frequency analysis of meteorological droughts. Journal of Hydrologic Engineering, 15(12), 985-1000.
Nalbantis, I., & Tsakiris, G. (2009). Assessment of hydrological drought revisited. Water resources management, 23, 881-897.
Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2022). Application of copula‐based approach as a new data‐driven model for downscaling the mean daily temperature. International Journal of Climatology.
Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2021). Flood routing via a copula-based approach. Hydrology Research, 52(6), 1294-1308.
Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2020). A new method for joint frequency analysis of modified precipitation anomaly percentage and streamflow drought index based on the conditional density of copula functions. Water Resources Management, 34, 4217-4231.
Pronoos Sedighi, M., Ramezani, Y., Nazeri Tahroudi, M., & Taghian, M. (2022). Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions. Acta Geophysica, 1-13.
Ramezani, Y., Nazeri Tahroudi, M., De Michele, C., & Mirabbasi, R. (2023). Application of copula-based and ARCH-based models in storm prediction. Theoretical and Applied Climatology, 1-17.
Salvadori, G., & De Michele, C. (2007). On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), 369-380.
Shiau, J. T., Wang, H. Y., & Tsai, C. T. (2006). Bivariate frequency analysis of floods using copulas1. JAWRA Journal of the American Water Resources Association, 42(6), 1549-1564.
Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8, 229-231.
Sung, J. H., Ryu, Y., & Chung, E. S. (2022). Multivariate Frequency Analysis for Streamflow Drought Having Different Time Resolution Using Archimedean Copula Functions. KSCE Journal of Civil Engineering, 26(4), 2013-2021.
Tabatabaei, S. M., Dastourani, M., Eslamian, S., & Nazeri Tahroudi, M. (2022). Ranking and optimizing the rain-gauge networks using the entropy–copula approach (Case study of the Siminehrood Basin, Iran). Applied Water Science, 12(9), 214.
Xu, P., Wang, D., Wang, Y., & Singh, V. P. (2022). A Stepwise and Dynamic C-Vine Copula–Based Approach for Nonstationary Monthly Streamflow Forecasts. Journal of Hydrologic Engineering, 27(1), 04021043.
Yang, X., Chen, Z., & Qin, M. (2023). Joint probability analysis of streamflow and sediment load based on hybrid copula. Environmental Science and Pollution Research, 1-14.
Zhang, D. D., Yan, D. H., Lu, F., Wang, Y. C., & Feng, J. (2015). Copula-based risk assessment of drought in Yunnan province, China. Natural Hazards, 75, 2199-2220.
Zhang, Q., Li, J., Singh, V. P., & Xu, C. Y. (2013). Copula‐based spatio‐temporal patterns of precipitation extremes in China. international Journal of Climatology, 33(5), 1140-1152.
Zhang, Q., Singh, V. P., Li, J., & Chen, X. (2011). Analysis of the periods of maximum consecutive wet days in China. Journal of Geophysical Research: Atmospheres, 116(D23).