Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., & Lettenmaier, D. P. (2005). Twentieth-century drought in the conterminous United States. Journal of Hydrometeorology, 6(6), 985-1001.
Belayneh, A., Adamowski, J., & Khalil, B. (2016). Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustainable Water Resources Management, 2, 87-101.
Caccamo, G., Chisholm, L. A., Bradstock, R. A., & Puotinen, M. L. (2011). Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing of Environment, 115(10), 2626-2639.
Damavandi, A. A., Rahimi, M., Yazdani, M. R., & Noroozi, A. A. (2016). Spatial monitoring of agricultural drought through time series of NDVI and LST indices of MODIS data (case study: Markazi Province). Scientific-Research Quarterly of Geographical Data (SEPEHR), 25(99), 115-126.
Dutta, D., Kundu, A., Patel, N. R., Saha, S. K., & Siddiqui, A. R. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). The Egyptian Journal of Remote Sensing and Space Science, 18(1), 53-63.
Firouzi, F., Tavosi, T., & Mahmoudi, P. (2019). Investigating the sensitivity of NDVI and EVI vegetation indices to dry and wet years in arid and semi-arid regions (Case study: Sistan plain, Iran). Scientific-Research Quarterly of Geographical Data (SEPEHR), 28(110), 163-179.
Hamzeh, S., Farahani, Z., Mahdavi, S., Chatrobgoun, O., & Gholamnia, M. (2017). Spatio-temporal monitoring of agricultural drought using remotely sensed data (Case study of Markazi province of Iran). Journal of Spatial Analysis Environmental Hazards, 4(3), 53-70.
Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J. R., & Sumner, D. (2014). Economic analysis of the 2014 drought for California agriculture (p. 16). University of California, Davis, CA: Center for Watershed Sciences.
Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote sensing of Environment, 87(1), 85-98.
Kang, Y., Khan, S., & Ma, X. (2015). Analysing climate change impacts on water productivity of cropping systems in the Murray Darling Basin, Australia. Irrigation and Drainage, 64(4), 443-453.
Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in space research, 15(11), 91-100.
Liu, Q., Zhang, S., Zhang, H., Bai, Y., & Zhang, J. (2020). Monitoring drought using composite drought indices based on remote sensing. Science of the total environment, 711, 134585.
Malaksabet, M., Zare, M., Hosari, M., & Mokhtari, M. (2015). Evaluation of meteorological indices of draught versus remote sensing indices: A case study of Yazd Province. Journal of Geographical Research on Desert Areas, 3(1), 101–18. (In Persian).
Meroni, M., Rembold, F., Fasbender, D., & Vrieling, A. (2017). Evaluation of the Standardized Precipitation Index as an early predictor of seasonal vegetation production anomalies in the Sahel. Remote sensing letters, 8(4), 301-310.
Meteorological Office of Lorestan Province. (2016). Climate Atlas of Lorestan Province.
Mirahsani, M., Mahini, S., Soffianian, S., Moddares, R., Jafari, R., & Mohammadi, J. (2018). Regional drought monitoring in Zayandeh-Rud Basin based on time series variations of the SPI and satellite-based VCI indices. Geography and Environmental Hazards, 6(24), 1–22. (In Persian).
Mirmosavei, S., & Kareimei, H. (2013). Effect of drought on vegetation cover using MODIS sensing images case: Kurdistan Province. Geography and Development, 11(31), 57-76.
Quiring, S. M., & Ganesh, S. (2010). Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agricultural and forest meteorology, 150(3), 330-339.
Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI), and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 1-12.
Rhee, J., Im, J., & Carbone, G. J. (2010). Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment, 114(12), 2875-2887.
Rimkus, E., Stonevicius, E., Kilpys, J., Maciulyte, V., & Valiukas, D. (2017). Drought identification in the eastern Baltic region using NDVI. Earth system dynamics, 8(3), 627-637.
Shahabfar, A., Ghulam, A., & Eitzinger, J. (2012). Drought monitoring in Iran using the perpendicular drought indices. International Journal of Applied Earth Observation and Geoinformation, 18, 119-127.
Singh, R. P., Roy, S., & Kogan, F. (2003). Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. International journal of remote sensing, 24(22), 4393-4402.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55-94.
Tsakiris, G., Nalbantis, I., Vangelis, H., Verbeiren, B., Huysmans, M., Tychon, B., ... & Batelaan, O. (2013). A system-based paradigm of drought analysis for operational management. Water resources management, 27, 5281-5297.
Zambrano, F., Lillo-Saavedra, M., Verbist, K., & Lagos, O. (2016). Sixteen years of agricultural drought assessment of the BioBío region in Chile using a 250 m resolution Vegetation Condition Index (VCI). Remote Sensing, 8(6), 530.
Zand, M. (2018). The economic effects of drought on the income of dryland farmers (wheat and barley) in Khorramabad city, 7th national conference on rainwater catchment Systems, Soil Conservation and Watershed Management Research Institute & Iranian Rainwater Catchment Systems Association.