Borji, M., Malekian, A., Salajegheh, A., & Ghadimi, M. (2016). Multi-time-scale analysis of hydrological drought forecasting using support vector regression (SVR) and artificial neural networks (ANN). Arabian Journal of Geosciences, 9, 1-10.
Camacho, F., McLeod, A. I., & Hipel, K. W. (1987). Multivariate contemporaneous ARMA model with hydrological applications. Stochastic Hydrology and Hydraulics, 1, 141-154.
Deger, I. H., Esıt, M., & Yuce, M. I. (2023). Univariate and bivariate hydrological drought frequency analysis by copula functions. Water Resources Management, 37(12), 4881-4907.
Ebrahimi Khusfi, Z. & Mirakbari, M. (2020). Performance evaluation of the CanESM2 global circulation model and the REMO regional model to predict changes of climate Parameters in Jazmourian watershed. Watershed Management Research, 4(129), 61-76. DIO:10.22092/wme .2020.341365.1300. (In Persian).
Ghonchepur, D., Saadaldin, A., Bahremand, A. R., Gikman, A. & Salmanmahiny, A. R. (2019). Application of quantitative screening method in statistical exponential micro-scale model (SDSM) to create climate change scenarios (Case study: Gorgan River basin). Echo Hydrology, 6(2). 397-314. (In Persian).
Kamali, S., & Asghari, K. (2023). The effect of meteorological and hydrological drought on groundwater storage under climate change scenarios. Water Resources Management, 37(8), 2925-2943.
Khalili, K., & Nazeri Tahroudi, M. (2016). Performance evaluation of ARMA and CARMA models in modeling annual precipitation of urmia synoptic station. Water and Soil Science, 26(2-1), 13-28.
Khalili, K., Nazeri Tahrudi, M., Abbaszadeh Afshar, M., & Nazeri Tahrudi, Z. (2014). Modeling monthly mean air temperature using SAMS2007 (case study: Urmia synoptic station). Journal of Middle East Applied Science and Technology, 15, 578-583.
Komorník, J., Komorníková, M., Mesiar, R., Szökeová, D., & Szolgay, J. (2006). Comparison of forecasting performance of nonlinear models of hydrological time series. Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1127-1145.
Kooshki, M., Rahimi, M., Amiri, M., Mohammadi, M., and Dastorani, J. (2017). Assessment of the relationship between drought time and meteorological and hydrological drought in Karaj watersheds. Journal of Ecohydrology, 4(3), 687-698. (In Persian)
Kousali, M., Salarijazi, M., & Ghorbani, K. (2022). Estimation of non-stationary behavior in annual and seasonal surface freshwater volume discharged into the Gorgan Bay, Iran. Natural Resources Research, 31(2), 835-847.
Matalas, N. C. (1967). Mathematical assessment of synthetic hydrology. Water Resources Research, 3(4), 937-945.
Modabber-Azizi, S., Salarijazi, M., & Ghorbani, K. (2023). A novel approach to recognize the long-term spatial-temporal pattern of dry and wet years over Iran. Physics and Chemistry of the Earth, Parts A/B/C, 103426.
Musa, J. (2013). Stochastic Modelling of Shirono River Stream flow process. AJER, 2(6), 49-54.
Nazeri Tahroudi, M., & Mirabbasi, R. (2022). Frequency Analysis of Precipitation Anomaly Percentage and Stream Flow Drought Using Copula Functions. Water Harvesting Research, 5(2), 168-176.
Nazeri Tahroudi, M., Ramezani, Y., & Ahmadi, F. (2019). Investigating the trend and time of precipitation and river flow rate changes in Lake Urmia basin, Iran. Arabian Journal of Geosciences, 12, 1-13.
Nazeri Tahroudi, M., Ramezani, Y., De Michele, C., & Mirabbasi, R. (2020). A new method for joint frequency analysis of modified precipitation anomaly percentage and streamflow drought index based on the conditional density of copula functions. Water Resources Management, 34, 4217-4231.
Ozkaya, A. (2023). Evaluating the relation between meteorological drought and hydrological drought, and the precipitation distribution for drought classes and return periods over the upper Tigris River catchment. Theoretical and Applied Climatology, 1-27.
Rahmani, F., & Fattahi, M. H. (2023). Long-term evaluation of land use/land cover and hydrological drought patterns alteration consequences on river water quality. Environment, Development and Sustainability, 1-18.
Salarijazi, M., Ghorbani, K., Mohammadi, M., Ahmadianfar, I., Mohammadrezapour, O., Naser, M. H., & Yaseen, Z. M. (2023). Spatial-temporal estimation of maximum temperature high returns periods for annual time series considering stationary/nonstationary approaches for Iran urban area. Urban Climate, 49, 101504.
Salas, J. D. (1980). Applied modeling of hydrologic time series. Water Resources Publication.
Shahidi, A., Ramezani, Y., Nazeri-Tahroudi, M., & Mohammadi, S. (2020). Application of vector autoregressive models to estimate pan evaporation values at the Salt Lake Basin, Iran. IDŐJÁRÁS/QUARTERLY JOURNAL OF THE HUNGARIAN METEOROLOGICAL SERVICE, 124(4), 463-482.
Tabari, H., Nikbakht, J., & Hosseinzadeh Talaee, P. (2013). Hydrological drought assessment in Northwestern Iran based on streamflow drought index (SDI). Water resources management, 27, 137-151.
Tareke, KA., & Awoke, AG. (2023). Hydrological drought forecasting and monitoring system development using artificial neural network (ANN) in Ethiopia. Heliyon, 9(2).
Tigkas, D., Vangelis, H., & Tsakiris, G. (2012). Drought and climatic change impact on streamflow in small watersheds. Science of the Total Environment, 440, 33-41.
Wang, H. R., Wang, C., Lin, X., & Kang, J. (2014). An improved ARIMA model for precipitation simulations. Nonlinear Processes in Geophysics, 21(6), 1159-1168.
Yap, Z. N., & Musa, S. (2023). Stream Flow Forcasting on Pahang River by Time Series Models, ARMA, ARIMA and SARIMA. Recent Trends in Civil Engineering and Built Environment, 4(1), 331-341.
Yuce, M. I., Deger, I. H., & Esit, M. (2023). Hydrological drought analysis of Yeşilırmak Basin of Turkey by streamflow drought index (SDI) and innovative trend analysis (ITA). Theoretical and Applied Climatology, 153(3-4), 1439-1462.