Abudu, S., Cui, C. L., King, J. P., & Abudukadeer, K. (2010). Comparison of performance of statistical models in forecasting monthly stream flow of Kizil River, China. Water Science and Engineering, 3(3), 269-281.
Adnan, R. M., Dai, H. L., Mostafa, R. R., Islam, A. R. M. T., Kisi, O., Elbeltagi, A., & Zounemat-Kermani, M. (2023). Application of novel binary optimized machine learning models for monthly streamflow prediction. Applied Water Science, 13(5), 110.
Adnan, R. M., Liang, Z., Kuriqi, A., Kisi, O., Malik, A., & Li, B. (2020, October). Stream flow forecasting using heuristic machine learning methods. In 2020 2nd International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
Ahmadi, F., Mehdizadeh, S., & Nourani, V. (2022). Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis. Stochastic Environmental Research and Risk Assessment, 36(9), 2753-2768.
Asefa, T., Kemblowski, M., McKee, M., & Khalil, A. (2006). Multi-time scale stream flow predictions: The support vector machines approach. Journal of hydrology, 318(1-4), 7-16.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Cheng, M., Fang, F., Kinouchi, T., Navon, I. M., & Pain, C. C. (2020). Long lead-time daily and monthly stream flow forecasting using machine learning methods. Journal of Hydrology, 590, 125376.
Essam, Y., Huang, Y. F., Ng, J. L., Birima, A. H., Ahmed, A. N., & El-Shafie, A. (2022). Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms. Scientific Reports, 12(1), 3883.
Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027.
Garsole, P., & Rajurkar, M. (2015). Stream flow forecasting by using support vector regression. In Proc., 20th Int. Conf. of Hydraulics, Water Resources and River Engineering.
Guo, J., Zhou, J., Qin, H., Zou, Q., & Li, Q. (2011). Monthly stream flow forecasting based on improved support vector machine model. Expert Systems with Applications, 38(10), 13073-13081.
Hong, W. C. (2008). Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200(1), 41-57.
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3), 489-501.
Islam, K. I., Elias, E., Carroll, K. C., & Brown, C. (2023). Exploring random forest machine learning and remote sensing data for streamflow prediction: An alternative approach to a process-based hydrologic modeling in a snowmelt-driven watershed. Remote Sensing, 15(16), 3999.
Kalra, A., & Ahmad, S. (2009). Using oceanic‐atmospheric oscillations for long lead time stream flow forecasting. Water Resources Research, 45(3), 233-242.
Khan, M. A., Farooq, F., Javed, M. F., Zafar, A., Ostrowski, K. A., Aslam, F., ... & Maślak, M. (2021). Simulation of depth of wear of eco-friendly concrete using machine learning based computational approaches. Materials, 15(1), 58-70.
Kişi, Ö. (2007). Stream flow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering, 12(5), 532-539.
Kumar, V., Kedam, N., Sharma, K. V., Mehta, D. J., & Caloiero, T. (2023). Advanced machine learning techniques to improve hydrological prediction: A comparative analysis of streamflow prediction models. Water, 15(14), 2572.
Li, P. H., Kwon, H. H., Sun, L., Lall, U., & Kao, J. J. (2010). A modified support vector machine based prediction model on stream flow at the Shihmen Reservoir, Taiwan. International Journal of Climatology, 30(8), 1256-1268.
Luna, I., Soares, S., Magalhaes, M. H., & Ballini, R. (2005, July). Stream flow forecasting using neural networks and fuzzy clustering techniques. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. (Vol. 4, pp. 2631-2636). IEEE.
Miche, Y., Sorjamaa, A., & Lendasse, A. (2008, September). OP-ELM: theory, experiments and a toolbox. In International conference on Artificial Neural networks (pp. 145-154). Berlin, Heidelberg: Springer Berlin Heidelberg.
Orellana-Alvear, J., Célleri, R., Rollenbeck, R., Muñoz, P., Contreras, P., & Bendix, J. (2020). Assessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model. Remote Sensing, 12(12), 1986.
Pustokhina, I., Seraj, A., Hafsan, H., Mostafavi, S. M., & Alizadeh, S. M. (2021). Developing a robust model based on the gaussian process regression approach to predict biodiesel properties. International Journal of Chemical Engineering, 2021, 1-12.
Rasouli, K., Hsieh, W. W., & Cannon, A. J. (2010). Short lead-time stream flow forecasting by machine learning methods, with climate variability incorporated. In World Environmental and Water Resources Congress 2010: Challenges of Change (pp. 4608-4619).
Rasouli, K., Hsieh, W. W., & Cannon, A. J. (2012). Daily stream flow forecasting by machine learning methods with weather and climate inputs. Journal of Hydrology, 414, 284-293.
Sahranavard, H., & Naseri, M. (2022). Investigating the effect of observational data length on ARIMA modeling and forecasting accuracy: a case study of Kortian Stream watershed, Iran. Water Supply, 22(11), 8253-8265.
Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85, 1-16.
She, N., & Basketfield, D. (2005). Long range forecast of stream flow using support vector machine. In Impacts of global climate change, 1-9.
Shiri, J., & Kisi, O. (2010). Short-term and long-term stream flow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology, 394(3-4), 486-493.
Singh, A. K., Kumar, P., Ali, R., Al-Ansari, N., Vishwakarma, D. K., Kushwaha, K. S., ... & Heddam, S. (2022). An integrated statistical-machine learning approach for runoff prediction. Sustainability, 14(13), 8209.
Sun, A. Y., Wang, D., & Xu, X. (2014). Monthly stream flow forecasting using Gaussian process regression. Journal of Hydrology, 511, 72-81.
Tongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of hydrology, 564, 266-282.
Tosunoğlu, F., HANAY, S., Çintaş, E., & Özyer, B. (2020). Monthly stream flow forecasting using machine learning. Erzincan University Journal of Science and Technology, 13(3), 1242-1251.
Tyralis, H., Papacharalampous, G., & Langousis, A. (2021). Super ensemble learning for daily stream flow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms. Neural Computing and Applications, 33(8), 3053-3068.
Were, K., Bui, D. T., Dick, Ø. B., & Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394-403.
Zakaria, Z. A., & Shabri, A. (2012). Stream flow forecasting at ungaged sites using support vector machines. Applied Mathematical Sciences, 6(60), 3003-3014.