Adjei, K. A., Ren, L., & Appiah-adjei, E. K. (2012). Validation of TRMM Data in the Black Volta Basin of Ghana. May, 647–654. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000487.
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., & Vitart, F. (2015). ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 19(1), 389–407. https://doi.org/10.5194/hess-19-389-2015
Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O. E., & Frei, C. (2022). Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. International Journal of Climatology, 42(2), 727–747. https://doi.org/10.1002/JOC.7269
Bitew, M. M., & Gebremichael, M. (2011). Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sciences, 15(4), 1147–1155. https://doi.org/10.5194/hess-15-1147-2011
Brunetti, M., Maugeri, M., Monti, F., & Nanni, T. (2006). Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. International Journal of Climatology, 26(3), 345–381. https://doi.org/10.1002/joc.1251
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Wayne Higgins, R., & Janowiak, J. E. (2008). Assessing objective techniques for gauge-based analyses of global daily precipitation. Journal of Geophysical Research, 113(D4), D04110. https://doi.org/10.1029/2007JD009132
Collischonn, B., Collischonn, W., & Tucci, C. E. M. (2008). Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360(1–4), 207–216. https://doi.org/10.1016/J.JHYDROL.2008.07.032
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
Duan, Z., Liu, J., Tuo, Y., Chiogna, G., & Disse, M. (2016). Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of The Total Environment, 573, 1536–1553. https://doi.org/10.1016/j.scitotenv.2016.08.213
Ebert, E. E., Janowiak, J. E., & Kidd, C. (2007). Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bulletin of the American Meteorological Society, 88(1), 47–64. https://doi.org/10.1175/BAMS-88-1-47
Einfalt, T., Arnbjerg-Nielsen, K., Golz, C., Jensen, N.-E., Quirmbach, M., Vaes, G., & Vieux, B. (2004). Towards a roadmap for use of radar rainfall data in urban drainage. Journal of Hydrology, 299(3–4), 186–202. https://doi.org/10.1016/j.jhydrol.2004.08.004
Fujihara, Y., Yamamoto, Y., Tsujimoto, Y., & Sakagami, J.-I. (2014). Discharge Simulation in a Data-Scarce Basin Using Reanalysis and Global Precipitation Data : A Case Study of the White Volta Basin. Journal of Water Resource and Protection, 06(6), 1316–1325. https://doi.org/10.4236/jwarp.2014.614121
Gao, F., Zhang, Y., Chen, Q., Wang, P., Yang, H., Yao, Y., & Cai, W. (2018). Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China. Atmospheric Research, 212, 150–157. https://doi.org/10.1016/j.atmosres.2018.05.016
Gomis-Cebolla, J., Rattayova, V., Salazar-Galán, S., & Francés, F. (2023). Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951–2020). Atmospheric Research, 284, 106606. https://doi.org/https://doi.org/10.1016/j.atmosres.2023.106606
Gorjizade, A., Akhond-Ali, A., Shahbazi, A., & Moridi, A. (2019). Comparison and Evaluation of precipitation estimated by ERA-Interim, PERSIANN-CDR and CHIRPS models at the upstream of Maroon dam. Iran’s Water Resources Research, 15(1), 267–279.
Gorjizade, A., Akhoond-Ali, A., Shahbazi, A., & Salmannia, F. (2022). Derivation of rainfall events using the gridded rainfall data using optimal combination of global rainfall datasets. Knowledge of Water and Soil, 32(2), 43–58. https://doi.org/10.22034/WS.2021.36069.2308
Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology. https://doi.org/10.1002/joc.3711
Hobouchian, M. P., Salio, P., García Skabar, Y., Vila, D., & Garreaud, R. (2017). Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmospheric Research, 190, 43–54.
Hsu, K., Gao, X., Sorooshian, S., & Gupta, H. V. (1997). Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. Journal of Applied Meteorology, 36(9), 1176–1190.
Humphrey, M. D., Istok, J. D., Lee, J. Y., Hevesi, J. A., & Flint, A. L. (1997). A new method for automated dynamic calibration of tipping-bucket rain gauges. Journal of Atmospheric and Oceanic Technology, 14(6), 1513–1519.
Javanmard, S., Yatagai, A., Nodzu, M. I., Bodaghjamali, J., & Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran. Advances in Geosciences, 25, 119–125. https://doi.org/10.5194/adgeo-25-119-2010
Jia, S., Zhu, W., Lu, A., & Yan, T. (2011). A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sensing of Environment, 115(12), 3069–3079. https://doi.org/10.1016/j.rse.2011.06.009
Joyce, R. J., Janowiak, J. E., Arkin, P. A., Xie, P., Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. Journal of Hydrometeorology, 5(3), 487–503.
Kim, I.-W., Oh, J., Woo, S., Kripalani, R. H., Kim, I.-W., Oh, J., Woo, S., & Kripalani, R. H. (2019). Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. ClDy, 52(3–4), 1317–1342. https://doi.org/10.1007/S00382-018-4193-4
Koutsouris, A. J., Chen, D., & Lyon, S. W. (2016). Comparing global precipitation data sets in eastern Africa: a case study of Kilombero Valley, Tanzania. International Journal of Climatology, 36(4), 2000–2014. https://doi.org/10.1002/joc.4476
Li, M., & Shao, Q. (2010). An improved statistical approach to merge satellite rainfall estimates and raingauge data. Journal of Hydrology, 385(1–4), 51–64. https://doi.org/10.1016/j.jhydrol.2010.01.023
Maggioni, V., Meyers, P. C., & Robinson, M. D. (2016). A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. Journal of Hydrometeorology, 17(4), 1101–1117. https://doi.org/10.1175/JHM-D-15-0190.1
Poméon, T., Jackisch, D., & Diekkrüger, B. (2017). Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. Journal of Hydrology, 547, 222–235. https://doi.org/10.1016/j.jhydrol.2017.01.055
Rao, P., Wang, F., Yuan, X., Liu, Y., & Jiao, Y. (2024). Evaluation and comparison of 11 sets of gridded precipitation products over the Qinghai-Tibet Plateau. Atmospheric Research, 302, 107315. https://doi.org/https://doi.org/10.1016/j.atmosres.2024.107315
Sharifi, E., Steinacker, R., & Saghafian, B. (2016). Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing, 8(2), 135. https://doi.org/10.3390/rs8020135
Sieck, L. C., Burges, S. J., & Steiner, M. (2007). Challenges in obtaining reliable measurements of point rainfall. Water Resources Research, 43(1). https://doi.org/10.1029/2005WR004519
Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Braithwaite, D. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society.
Tan, M. L., & Duan, Z. (2017). Assessment of GPM and TRMM precipitation products over Singapore. Remote Sensing, 9(7), 720. https://doi.org/10.3390/rs9070720
Tan, M. L., Ibrahim, A. L., Duan, Z., Cracknell, A. P., & Chaplot, V. (2015). Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing, 7(2), 1504–1528. https://doi.org/10.3390/rs70201504
Tan, M. L., & Santo, H. (2018). Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202, 63–76. https://doi.org/10.1016/j.atmosres.2017.11.006
Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., & Hong, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240. https://doi.org/10.1016/J.RSE.2020.111697
Tao, H., Fischer, T., Zeng, Y., & Fraedrich, K. (2016). Evaluation of TRMM 3B43 precipitation data for drought monitoring in Jiangsu Province, China. Water (Switzerland), 8(6), 221. https://doi.org/10.3390/w8060221
Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega, E., Machado, L. A. T., Angelis, C. F., Salio, P., Kidd, C., Huffman, G. J., & de Castro, M. (2012). Global precipitation measurement: Methods, datasets and applications. In Atmospheric Research (Vols. 104–105, pp. 70–97). Elsevier.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719
Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., & De Roo, A. (2013). Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. Journal of Hydrology, 499, 324–338. https://doi.org/10.1016/j.jhydrol.2013.07.012
Worqlul, A. W., Maathuis, B., Adem, A. A., Demissie, S. S., Langan, S., & Steenhuis, T. S. (2014). Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrology and Earth System Sciences, 18(12), 4871–4881. https://doi.org/10.5194/hess-18-4871-2014
Worqlul, A. W., Yen, H., Collick, A. S., Tilahun, S. A., Langan, S., & Steenhuis, T. S. (2017). Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena, 152, 242–251. https://doi.org/10.1016/j.catena.2017.01.019
Xie, P., & Xiong, A.-Y. Y. (2011). A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. 116. https://doi.org/10.1029/2011JD016118
Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., & Hou, A. (2017). Ground validation of GPM IMERG and trmm 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge network. Journal of Geophysical Research, 122(2), 910–924. https://doi.org/10.1002/2016JD025418