Document Type : Research Paper

Authors

1 Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran

2 Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran; Nano Compound Seman Dara Company, Semnan, Iran

10.22077/jwhr.2024.7870.1143

Abstract

The population growth and consequently lack of fresh water resources, are the main concerns of developed communities. Providing water from air humidity is an efficient, clean, and sustainable solution that can supply sweet and fresh water. In this study, different metal surfaces including copper, steel, and aluminum plates have been prepared as a hydrophobic or hydrophilic surfaces through laser, to investigate the amount of collected water at 294.15 K under fully humid environment (100% humidity), at different encounter angles with plates (45, 70, and 90 °). Moreover, the metal plates along with small or large meshes have been also tested. In addition, polytetrafluoroethylene plates have been prepared via laser in order to water harvesting from humid air. It has been shown that all surfaces treated with laser have better efficiency for water harvesting in comparison with the plates without laser. Likewise, the angle of 45° has had the highest amount of collected water on all surfaces. Eventually, it has been observed that steel plate modified with laser 1 has had higher efficiency for producing drinking water.

Keywords

Main Subjects

Al-Agha, M. R., & Mortaja, R. S. (2005). Desalination in the Gaza Strip: drinking water supply and environmental impact.  Desalination173(2), 157-171.
Bhushan, B. (2020). Design of water harvesting towers and projections for water collection from fog and condensation. Philosophical Transactions of the Royal Society A378 (2167), 20190440.
Brown, P. S., & Bhushan, B. (2016). Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences374(2073), 20160135.
Clark, L. (1985). Groundwater abstraction from basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology18(1), 25-34.
Dennis, A. S. (1980). Weather modification by cloud seeding. International geophysics series24.
Furumai, H. (2008). Rainwater and reclaimed wastewater for sustainable urban water use. Physics and Chemistry of the Earth, Parts A/B/C33(5), 340-346.
Ganesh, V. A., Ranganath, A. S., Baji, A., Raut, H. K., Sahay, R., & Ramakrishna, S. (2017). Hierarchical structured electrospun nanofibers for improved fog harvesting applications. Macromolecular Materials and Engineering302(2), 1600387.
Ghosh, R., Patra, C., Singh, P., Ganguly, R., Sahu, R. P., Zhitomirsky, I., & Puri, I. K. (2020). Influence of metal mesh wettability on fog harvesting in industrial cooling towers. Applied Thermal Engineering181, 115963.
Ghosh, R., Sahu, R. P., Ganguly, R., Zhitomirsky, I., & Puri, I. K. (2020). Photocatalytic activity of electrophoretically deposited TiO2 and ZnO nanoparticles on fog harvesting meshes. Ceramics International46(3), 3777-3785.
Gurera, D., & Bhushan, B. (2019). Optimization of bioinspired conical surfaces for water collection from fog. Journal of colloid and interface science551, 26-38.
Gürsoy, M., & Kocadayıoğulları, B. (2023). Environmentally Friendly Approach for the Plasma Surface Modification of Fabrics for Improved Fog Harvesting Performance. Fibers and Polymers24(10), 3557-3567.
Hillie, T., & Hlophe, M. (2007). Nanotechnology and the challenge of clean water. Nature nanotechnology2(11), 663-664.
Jagdheesh, R. (2022). Rapid and Tunable Superhydrophobic Tin Surface by Ultrafast Laser Processing. Available at SSRN 4155215.
Jarimi, H., Powell, R., & Riffat, S. (2020). Review of sustainable methods for atmospheric water harvesting. International Journal of Low-Carbon Technologies15(2), 253-276.
Knapczyk-Korczak, J., Szewczyk, P. K., Ura, D. P., Bailey, R. J., Bilotti, E., & Stachewicz, U. (2020). Improving water harvesting efficiency of fog collectors with electrospun random and aligned Polyvinylidene fluoride (PVDF) fibers. Sustainable materials and technologies25, e00191.
Munoz-Reinoso, J. C. (2001). Vegetation changes and groundwater abstraction in SW Doñana, Spain. Journal of Hydrology242(3-4), 197-209.
Nguyen, L. T., Bai, Z., Zhu, J., Gao, C., Liu, X., Wagaye, B. T., ... & Guo, J. (2021). Three-dimensional multilayer vertical filament meshes for enhancing efficiency in fog water harvesting. ACS omega6(5), 3910-3920.
Nioras, D., Ellinas, K., Constantoudis, V., & Gogolides, E. (2021). How different are fog collection and dew water harvesting on surfaces with different wetting behaviors?. ACS Applied Materials & Interfaces13(40), 48322-48332.
Olivier, J. (2002). Fog-water harvesting along the West Coast of South Africa: A feasibility study. Water Sa28(4), 349-360.
Randhir, T., & Genge, C. (2005). Watershed based, institutional approach to developing clean water resources 1. JAWRA Journal of the American Water Resources Association41(2), 413-424.
Razi, S., Madanipour, K., & Mollabashi, M. (2016). Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures. Optics & Laser Technology80, 237-246.
Rosenfeld, D., & Woodley, W. L. (1993). Effects of cloud seeding in west Texas: Additional results and new insights. Journal of Applied Meteorology and Climatology32(12), 1848-1866.
Schunk, C., Trautwein, P., Hruschka, H., Frost, E., Dodson, L., Derhem, A., ... & Menzel, A. (2018). Testing water yield, efficiency of different meshes and water quality with a novel fog collector for high wind speeds. Aerosol and Air Quality Research18(1), 240-253.
Seo, D., Lee, J., Lee, C., & Nam, Y. (2016). The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Scientific reports6(1), 1-11.
Şevik, S., & Aktaş, A. (2022). Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays. Renewable Energy181, 490-503.
Shi, W., Anderson, M. J., Tulkoff, J. B., Kennedy, B. S., & Boreyko, J. B. (2018). Fog harvesting with harps. ACS applied materials & interfaces10(14), 11979-11986.
Showket, J., Majumder, S., Kumar, N., Sett, S., & Mahapatra, P. S. (2024). Fog harvesting on micro-structured metal meshes: Effect of surface ageing. Micro and Nano Engineering22, 100236.
UNID. (2016). Water for Life, 2005-2015. Focus Areas: Water scarcity (November 2014), http://www.un.org/waterforlifedecade/scarcity.shtml
Vieira, A. S., Weeber, M., & Ghisi, E. (2013). Self-cleaning filtration: A novel concept for rainwater harvesting systems. Resources, Conservation and Recycling78, 67-73.
Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters37(20).
Wang, X., Guo, Z., & Liu, W. (2023). An efficient fog collector achieved by optimal hierarchical surface patterns and wetting gradient. Advanced Materials Interfaces10(8), 2202123.
Wang, X., Zeng, J., Li, J., Yu, X., Wang, Z., & Zhang, Y. (2021). Beetle and cactus-inspired surface endows continuous and directional droplet jumping for efficient water harvesting. Journal of Materials Chemistry A9(3), 1507-1516.
Wang, X., Zeng, J., Yu, X., Liang, C., & Zhang, Y. (2019). Water harvesting method via a hybrid superwettable coating with superhydrophobic and superhydrophilic nanoparticles. Applied Surface Science465, 986-994.
World Health Organization. (2011). Safe drinking-water from desalination (No. WHO/HSE/WSH/11.03). World Health Organization.
Worm, J. (2006). AD43E Rainwater harvesting for domestic use (No. 43). Agromisa Foundation.
Yang, Z., Tian, Y., Zhao, Y., & Yang, C. (2019). Study on the fabrication of super-hydrophobic surface on inconel alloy via nanosecond laser ablation. Materials12(2), 278.
Zeng, M. J., Qu, Z. G., & Zhang, J. F. (2023). Experimental study on water collection performance of wire-to-plate electrostatic fog collector at various fog generation rates and fog flow velocities. Separation and Purification Technology305, 122465.
Zhou, W. L., Wu, T., Du, Y., Zhang, X. H., Chen, X. C., Li, J. B., ... & Qu, J. P. (2023). Efficient fabrication of desert beetle-inspired micro/nano-structures on polypropylene/graphene surface with hybrid wettability, chemical tolerance, and passive anti-icing for quantitative fog harvesting. Chemical Engineering Journal453, 139784.
Zhu, S., Li, J., Ma, L., He, C., Liu, E., He, F., ... & Zhao, N. (2018). Artificial neural network enabled capacitance prediction for carbon-based supercapacitors. Materials Letters233, 294-297