Document Type : Research Paper

Authors

1 PhD Candidate, Department of Water and Environmental Engineering, Shahrood University of Technology, Shahrood, Iran.

2 Assistant Professor, Department of Water and Environmental Engineering, Shahrood University of Technology, Shahrood, Iran.

3 Assistant Professor, Department of Mathematics, Yasouj University, Yasouj, Iran.

4 Post-Doctoral Fellow, Department of Civil Engineering, McMaster University, Hamilton, Ontario, L8S4L8, Canada.

10.22077/jwhr.2024.8502.1159

Abstract

Climate change negatively impacts hydrologic patterns, affecting rainfall, temperature extremes, and sea level rise. Long-term averages of these variables may shift over time due to climate change effects. This study conducted trend analysis on rainfall, maximum and minimum temperature, and water level data from Manhattan, Central Park, and Battery Park stations to identify significant changes in means. The Partial Mann-Kendall test was employed for trend analysis. Frequency analysis utilized common probability distribution functions, including Generalized Extreme Value (GEV), normal, log-normal, and Log-Pearson distributions, with goodness-of-fit tests like Kolmogorov-Smirnov to identify the most suitable distributions. While flood frequency analysis typically examines rainfall and water levels separately, their combination can significantly influence floodplain delineation. This study aimed to enhance flood frequency analysis by considering joint probability distributions for rainfall and storm surge. The correlations between variables and joint probabilities of extreme water levels and temperatures were explored to assess the potential impacts of global warming on sea level flooding. Copula functions determined the joint probabilities of water levels with rainfall and temperature across various recurrence intervals. The trend analysis results indicated an increase in long-term averages due to climate change. The GEV distribution emerged as the most appropriate function for extreme climate variables. This joint probability distribution analysis underscored the necessity of incorporating both rainfall and water level data in flood frequency assessments.

Keywords

Main Subjects

AghaKouchak, A., Cheng, L., & Mazdiyasni, O. (2020). "Concurrent changes in extreme weather events and their implications for flood risk." Geophysical Research Letters, 47(12), e2020GL087123.
AghaKouchak, A., Cheng, L., Mazdiyasni, O., & Farahmand, A. (2014). Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophysical Research Letters41(24), 8847-8852.
Bedient, P. B., & Huber, W. C., (2002). Hydrology and floodplain analysis. Addison-Wesley.
Burn, D. H. (1990). Evaluation of regional flood frequency analysis with a region of influence approach. Water Resources Research, 26(10), 2257-2265.
Burn, D. H., Cunderlik, J. M., & Pietroniro, A. (2004). Hydrological trends and variability in the Liard River basin. Hydrological Sciences Journal49(1), 53-67.
Chebana, F., Ouarda, T. B., & Duong, T. C. (2013). Testing for multivariate trends in hydrologic frequency analysis. Journal of Hydrology, 486, 519-530.
Cheng, L., Hoerling, M., AghaKouchak, A., Livneh, B., Quan, X. W., & Eischeid, J. (2016). How has human-induced climate change affected California drought risk?. Journal of Climate29(1), 111-120.
Cong, R. G., & Brady, M. (2012). The interdependence between rainfall and temperature: copula analyses. The Scientific World Journal2012(1), 405675.
Fathian, F., Dehghan, Z., Bazrkar, M. H., & Eslamian, S. (2016). Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrological Sciences Journal61(5), 892-904.
Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B., (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40(1).
Foster, H. A. (1924). Theoretical frequency curves and their application to engineering problem. Transactions of the American Society of Civil Engineers, 87(1), 142-173.
Genest, C., & Werker, B. J. (2002). Conditions for the asymptotic semiparametric efficiency of an omnibus estimator of dependence parameters in copula models. Distributions with given Marginals and Statistical Modelling, 103-112.
Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics44(2), 199-213.
Gilroy, K. L., & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology414, 40-48.
Goharian, E., Burian, S. J., Bardsley, T., & Strong, C. (2016). Incorporating potential severity into vulnerability assessment of water supply systems under climate change conditions. Journal of Water Resources Planning and Management142(2), 04015051.
Golian, S., Saghafian, B., & Farokhnia, A. (2012). Copula-based interpretation of continuous rainfall–runoff simulations of a watershed in northern Iran. Canadian Journal of Earth Sciences49(5), 681-691.
Gräler, B., van den BERG, M. J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., & Verhoest, N. E. C. (2013). Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences17(4), 1281-1296.
Gumbel, E. J. (2012). Statistics of Extremes, Courier Corporation.
Hawkes, P. J., Gonzalez-Marco, D., Sánchez-Arcilla, A., & Prinos, P. (2008). Best practice for the estimation of extremes: A review. Journal of Hydraulic Research46(S2), 324-332.
Karamouz, M., Fereshtehpour, M., Ahmadvand, F., & Zahmatkesh, Z. (2016). Coastal flood damage estimator: An alternative to FEMA’s HAZUS platform. Journal of Irrigation and Drainage Engineering142(6), 04016016.
Karamouz, M., Razmi, A., Nazif, S., & Zahmatkesh, Z. (2017). Integration of inland and coastal storms for flood hazard assessment using a distributed hydrologic model. Environmental Earth Sciences76, 1-17.
Karamouz, M., Zahmatkesh, Z., Nazif, S., & Razmi, A. (2014). An evaluation of climate change impacts on extreme sea level variability: Coastal area of New York City. Water resources management28, 3697-3714.
Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in climate change. Climate Research, 21(2), 107-120.
Keerthirathne, D. G. T. C., & Perera, K. (2015). Joint distribution of rainfall and temperature in Anuradhapura, Sri Lanka using copulas. In International Research Symposium on Engineering Advancements, 42-45.
Kendall, M.G., (1975). Rank Correlation Methods, fourth ed. Charles Griffin & Company Ltd., London.
Kharin, V. V., Zwiers, F. W., & Zhang, X. (2013). Changes in Temperature and Precipitation Extremes in the CMIP5 Models. Journal of Climate, 26(18), 7128-7141.
Kojadinovic, I., & Yan, J. (2010). Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software34, 1-20.
Kron, W. (2005). Flood risk= hazard• values• vulnerability. Water International, 30(1), 58-68.
Laz, O. U., & Rahman, A. (2014). Trends in extreme rainfall events in Tasmania, Australia. International Journal of Environmental and Ecological Engineering8(12), 824-828.
Li, N., Liu, X., & Zhang, P. (2023). "Joint distribution analysis of rainfall and temperature using copulas: Implications for flood frequency analysis." Water Resources Research, 59(4), e2022WR032123.
Li, N., Liu, X., Xie, W., Wu, J., & Zhang, P. (2013). The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution. Risk Analysis: An International Journal, 33(1), 134-145.
Libiseller, C. (2002). A program for the computation of multivariate and partial Mann-Kendall test. University of Linköping, Sweden.
Libiseller, C., & Grimvall, A. (2002). Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics: The official journal of the International Environmetrics Society13(1), 71-84.
Liu, Z., Zhou, P., Chen, X., & Guan, Y. (2015). A multivariate conditional model for streamflow prediction and spatial precipitation refinement. Journal of Geophysical Research: Atmospheres, 120(19), 10-116.
Madadgar, S. (2013). Towards improving drought forecasts across different spatial and temporal scales (Doctoral dissertation, Portland State University).
Madadgar, S., & Moradkhani, H. (2013). Drought analysis under climate change using copula. Journal of Hydrologic Engineering18(7), 746-759.
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514-517.
Mudersbach, C., & Jensen, J. (2010). Nonstationary extreme value analysis of annual maximum water levels for designing coastal structures on the German North Sea coastline. Journal of Flood Risk Management3(1), 52-62.
Nelsen, R. B. (2006). An introduction to copulas. Springer.
Pielke, R. A., Downton, M. W., & Miller, J. B. (2002). Flood damage in the United States, 1926-2000: a reanalysis of National Weather Service estimates. Boulder, CO: University Corporation for Atmospheric Research.
Razmi, A. (2012). Assessment of climate change impacts on coastal flood risk management. (M.Sc. thesis, Azad University, Tehran, Iran).
Robson, A. J. (2002). Evidence for trends in UK flooding. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1796), 1327-1343.
Roussas, G. G. (2013). Introduction to probability. Academic Press.
Saf, B. (2008). Application of index procedures to flood frequency analysis in Turkey 1. JAWRA Journal of the American Water Resources Association44(1), 37-47.
Salvadori, G., & De Michele, C. (2004). Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research40(12).
Salvadori, G., De Michele, C., & Durante, F. (2011). On the return period and design in a multivariate framework. Hydrology and Earth System Sciences15(11), 3293-3305.
Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Extremes in nature: an approach using copulas (Vol. 56). Springer Science & Business Media.
Salvadori, G., Durante, F., & De Michele, C. (2013). Multivariate return period calculation via survival functions. Water Resources Research49(4), 2308-2311.
Schoelzel, C., & Friederichs, P. (2008). Multivariate non-normally distributed random variables in climate research–introduction to the copula approach. Nonlinear Processes in Geophysics15(5), 761-772.
Shih, J. H., & Louis, T. A. (1995). Inferences on the association parameter in copula models for bivariate survival data. Biometrics, 1384-1399.
Singh, V. P., & Strupczewski, W. G. (2002). On the status of flood frequency analysis.
Sklar, A. (1996). Random variables, distribution functions, and copulas: a personal look backward and forward. Lecture Notes-Monograph Series, 1-14.
Song, J. B., Wei, E. B., & Hou, Y. J. (2004). Joint statistical distribution of two-point sea surface elevations in finite water depth. Coastal Engineering50(4), 169-179.
Su, D., Wang, Y., & Chen, Y. (2020). Generalized Extreme Value Distribution for Modeling Extreme Weather Events: A Case Study of Rainfall in China. Water, 12(8), 2258.
Svensson, C., Kundzewicz, W. Z., & Maurer, T. (2005). Trend detection in river flow series: 2. Flood and low-flow index series. Hydrological Sciences Journal50(5).
Wahlin, K., & Grimvall, A. (2010). Roadmap for assessing regional trends in groundwater quality. Environmental Monitoring and Assessment165, 217-231.
Wang, C., Chang, N. B., & Yeh, G. T. (2009). Copula‐based flood frequency (COFF) analysis at the confluences of river systems. Hydrological Processes: An International Journal23(10), 1471-1486.
William, H. (2003). Econometric analysis fifth edition.
Xu, K., Ma, C., Lian, J., & Bin, L. (2014). Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment. PLoS One9(10), e109341.
Zeng, L., Wang, H., & Liu, X. (2023). Revisiting the Generalized Extreme Value Distribution for Rainfall Extremes: A Comprehensive Analysis Based on Long-term Observations. Journal of Hydrology, 598, 126244.
Zhou, Y., Zhang, Y., & Chen, H. (2021). "Impact of climate change on precipitation patterns and flood risks in urban areas." Journal of Hydrology, 598, 126-134.