Ahrari, A., Sharifi, A., & Haghighi, A. T. (2024). Anthropogenic vs. climatic drivers: Dissecting Lake desiccation on the Iranian plateau. Journal of environmental management, 368, 122103.
Alhussein, M., Aurangzeb, K., & Haider, S. I. (2020). Hybrid CNN-LSTM model for short-term individual household load forecasting. Ieee Access, 8, 180544-180557.
Damansabz, A., Khajeh, M., Piri, J., & Ghaffari-Moghaddam, M. (2025). A novel GWO-DE-LSTM hybrid model for predicting statin drug solubility in supercritical carbon dioxide: a comparative analysis with traditional machine learning approaches. Network Modeling Analysis in Health Informatics and Bioinformatics, 14(1), 1-16.
Deb, D., Arunachalam, V., & Raju, K. S. (2024). Daily reservoir inflow prediction using stacking ensemble of machine learning algorithms. Journal of hydroinformatics, 26(5), 972-997.
Farhadi, A., Zamanifar, A., Alipour, A., Taheri, A., & Asadolahi, M. (2025). A hybrid LSTM-GRU model for stock price prediction. Ieee Access.
Galassi, A., Lippi, M., & Torroni, P. (2020). Attention in natural language processing. IEEE transactions on neural networks and learning systems, 32(10), 4291-4308.
Granata, F., & Di Nunno, F. (2025). Pathways for hydrological resilience: Strategies for adaptation in a changing climate. Earth Systems and Environment, 1-29.
Jiang, D., & Wang, K. (2019). The role of satellite-based remote sensing in improving simulated streamflow: A review. Water, 11(8), 1615.
Keshtegar, B., Piri, J., & Kisi, O. (2016). A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Computers and Electronics in Agriculture, 127, 120-130.
Kim, S., Choi, K., Choi, H.-S., Lee, B., & Yoon, S. (2022). Towards a rigorous evaluation of time-series anomaly detection. Proceedings of the AAAI conference on artificial intelligence,
Li, X., Yang, X., Wang, X., & Deng, C. (2024). Agree to disagree: Exploring partial semantic consistency against visual deviation for compositional zero-shot learning. IEEE Transactions on Cognitive and Developmental Systems, 16(4), 1433-1444.
Liang, E., Tang, H., Liu, Y., Liu, S., Wu, J., Pan, W., Shang, Y., & Yin, S. (2025). A global synthesis reveals the role of strategic hydropower planning in mitigating adverse impacts of reservoir flooding. Renewable and Sustainable Energy Reviews, 217, 115723.
Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural computing and applications, 32(23), 17351-17360.
Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information, 15(9), 517.
Ortiz-Partida, J. P., Fernandez-Bou, A. S., Maskey, M., Rodríguez-Flores, J. M., Medellín-Azuara, J., Sandoval-Solis, S., Ermolieva, T., Kanavas, Z., Sahu, R. K., & Wada, Y. (2023). Hydro-economic modeling of water resources management challenges: Current applications and future directions. Water Economics and Policy, 9(01), 2340003.
Piri, J., & Kisi, O. (2024). Hybrid non-linear probabilistic model using Monte Carlo simulation and hybrid support vector regression for evaporation predictions. Hydrological Sciences Journal, 1-29.
Pokharel, S. (2025). Towards Advancing Streamflow and Peak Flow Prediction With Machine Learning: Identifying Infrastructure at Risk The University of Nebraska-Lincoln].
Qian, X., Wang, B., Chen, J., Fan, Y., Mo, R., Xu, C., Liu, W., Liu, J., & Zhong, P.-a. (2025). An explainable ensemble deep learning model for long-term streamflow forecasting under multiple uncertainties. Journal of Hydrology, 133968.
Rithani, M., Kumar, R. P., & Doss, S. (2023). A review on big data based on deep neural network approaches. Artificial Intelligence Review, 56(12), 14765-14801.
Sajjad, M., Khan, Z. A., Ullah, A., Hussain, T., Ullah, W., Lee, M. Y., & Baik, S. W. (2020). A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. Ieee Access, 8, 143759-143768.
Smith, J. D., Koenig, L. E., Sleckman, M. J., Appling, A. P., Sadler, J. M., DePaul, V. T., & Szabo, Z. (2024). Predictive Understanding of Stream Salinization in a Developed Watershed Using Machine Learning. Environmental Science & Technology, 58(42), 18822-18833.
Suzauddola, M., Zhang, D., Zeb, A., Chen, J., Wei, L., & Rayhan, A. S. (2025). Advanced deep learning model for crop-specific and cross-crop pest identification. Expert Systems with Applications, 274, 126896.
Thrun, M. C., Gehlert, T., & Ultsch, A. (2020). Analyzing the fine structure of distributions. PloS one, 15(10), e0238835.
Ullah, K., Ahsan, M., Hasanat, S. M., Haris, M., Yousaf, H., Raza, S. F., Tandon, R., Abid, S., & Ullah, Z. (2024). Short-term load forecasting: A comprehensive review and simulation study with CNN-LSTM hybrids approach. Ieee Access.
Uppalapati, S., Paramasivam, P., Kilari, N., Chohan, J. S., Kanti, P. K., Vemanaboina, H., Dabelo, L. H., & Gupta, R. (2025). Precision biochar yield forecasting employing random forest and XGBoost with Taylor diagram visualization. Scientific Reports, 15(1), 7105.
Wang, W.-c., Gu, M., Hong, Y.-h., Hu, X.-x., Zang, H.-f., Chen, X.-n., & Jin, Y.-g. (2024). SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting. Scientific Reports, 14(1), 23550.
Wang, X., Zhou, J., Ma, J., Luo, P., Fu, X., Feng, X., Zhang, X., Jia, Z., Wang, X., & Huang, X. (2024). Evaluation and comparison of reanalysis data for runoff simulation in the data-scarce watersheds of alpine regions. Remote Sensing, 16(5), 751.
Zhang, D.-D., & Xu, J. (2024). Long-term monitoring of surface water dynamics and analysis of its driving mechanism: A case study of the Yangtze River Basin. Water, 16(5), 677.