Document Type : Research Paper

Authors

1 Assistant Professor, Department of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Associate Professor, Department of Water and Environmental Engineering, Faculty of Civil, Shahid Beheshti University, Tehran,Iran.

10.22077/jwhr.2024.7930.1146

Abstract

Precipitation provides the most crucial input for hydrological modeling. Rainfall Estimation from rain gauges is the most common and traditional method have been used widely to measure rainfall at catchment scales. In many developing countries, a dense rain-gauge grid is generally unavailable, suffering from a sparse station distribution at high altitudes or in rural areas. Recent advances in remote sensing technologies have provided precipitation data with high spatial and temporal resolution. Accurate information on the benefits and deficits of these datasets is often lacking, especially over Iran. This study aims to provides a comprehensive evaluation of a good variety of state-of-the art precipitation datasets against 41 synoptic gauge observations, as a reference in the period of 2013 to 2020 over Iran. In particular, the performance of ERA5 as reanalysis, PERSIANN as satellite based, CHIRPS and PERSIANN-CDR as satellite-gauge precipitation products at daily, monthly and annual scale has been assessed. Statistical metrics, precipitation detection capability and false alarm ratio have been used to measure the accuracy of each product over spatial and time scales. The result show that over annual and daily scale PERSIANN-CDR product outperforms, and over daily scale PERSIANN-CDR and CHIRPS products perform well compared to ERA5 and PERSIANN products. The CHIRPS and PERSIANN-CDR products deliver reliable and useful ability of precipitation detection comparing to other products. 

Keywords

Main Subjects

Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., & Dehghani, M. (2017). Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. International Journal of Climatology. https://doi.org/10.1002/joc.5131
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
Bitew, M. M., & Gebremichael, M. (2011). Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sciences, 15(4), 1147–1155. https://doi.org/10.5194/hess-15-1147-2011
Dinpashoh, Y., Fakheri-Fard, A., Moghaddam, M., Jahanbakhsh, S., & Mirnia, M. (2004). Selection of variables for the purpose of regionalization of Iran’s precipitation climate using multivariate methods. Journal of Hydrology, 297(1–4), 109–123.
Duan, Z., Liu, J., Tuo, Y., Chiogna, G., & Disse, M. (2016). Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of The Total Environment, 573, 1536–1553. https://doi.org/10.1016/j.scitotenv.2016.08.213
Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L., & Mekonnen, D. F. (2019). Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.12.026
Einfalt, T., Arnbjerg-Nielsen, K., Golz, C., Jensen, N.-E., Quirmbach, M., Vaes, G., & Vieux, B. (2004). Towards a roadmap for use of radar rainfall data in urban drainage. Journal of Hydrology, 299(3–4), 186–202. https://doi.org/10.1016/j.jhydrol.2004.08.004
Fallah, A., Rakhshandehroo, G. R., Berg, P., Sungmin, O., & Orth, R. (2020). Evaluation of precipitation datasets against local observations in southwestern Iran. International Journal of Climatology. https://doi.org/10.1002/joc.6445
Fujihara, Y., Yamamoto, Y., Tsujimoto, Y., & Sakagami, J.-I. (2014). Discharge Simulation in a Data-Scarce Basin Using Reanalysis and Global Precipitation Data : A Case Study of the White Volta Basin. Journal of Water Resource and Protection, 06(6), 1316–1325. https://doi.org/10.4236/jwarp.2014.614121
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66
Gao, F., Zhang, Y., Chen, Q., Wang, P., Yang, H., Yao, Y., & Cai, W. (2018). Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China. Atmospheric Research, 212, 150–157. https://doi.org/10.1016/j.atmosres.2018.05.016
Gao, F., Zhang, Y., Ren, X., Yao, Y., Hao, Z., & Cai, W. (2018). Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China. Natural Hazards. https://doi.org/10.1007/s11069-018-3196-0
Gomis-Cebolla, J., Rattayova, V., Salazar-Galán, S., & Francés, F. (2023). Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951–2020). Atmospheric Research, 284, 106606. https://doi.org/https://doi.org/10.1016/j.atmosres.2023.106606
Gorjizade, A., Akhond-Ali, A., Shahbazi, A., & Moridi, A. (2019). Comparison and Evaluation of precipitation estimated by ERA-Interim, PERSIANN-CDR and CHIRPS models at the upstream of Maroon dam. Iran-Water Resources Research, 15(1), 267–279. https://doi.org/20.1001.1.17352347.1398.15.1.20.7
Gorjizade, A., Akhoond-Ali, A. M., Shahbazi, A., & Moridi, A. (2020). Evaluation and comparison of high spatial resolution gridded precipitation by TRMM, ERA5 and PERSIANN-CCS datasets on the upstream of the maroon basin, Iran. In AUT Journal of Civil Engineering (Vol. 0). Amirkabir University of Technology. https://doi.org/10.22060/AJCE.2020.17043.5610
Gorjizade, A., Akhoond-Ali, A., Shahbazi, A., & Salmannia, F. (2022). Derivation of rainfall events using the gridded rainfall data using optimal combination of global rainfall datasets. Knowledge of Water and Soil, 32(2), 43–58.
Guo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Hu, J., & Stepanian, P. M. (2016). Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmospheric Research, 176–177, 121–133.
Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X. (2004). Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. Journal of Applied Meteorology, 43(12), 1834–1853. https://doi.org/10.1175/JAM2173.1
Kim, K., Park, J., Baik, J., & Choi, M. (2017). Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmospheric Research, 187, 95–105. https://doi.org/10.1016/j.atmosres.2016.12.007
Li, M., & Shao, Q. (2010). An improved statistical approach to merge satellite rainfall estimates and raingauge data. Journal of Hydrology, 385(1–4), 51–64. https://doi.org/10.1016/j.jhydrol.2010.01.023
Maggioni, V., Meyers, P. C., & Robinson, M. D. (2016). A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. Journal of Hydrometeorology, 17(4), 1101–1117. https://doi.org/10.1175/JHM-D-15-0190.1
Ning, S., Wang, J., Jin, J., & Ishidaira, H. (2016). Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland. Water (Switzerland), 8(11), 481. https://doi.org/10.3390/w8110481
Poméon, T., Jackisch, D., & Diekkrüger, B. (2017). Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. Journal of Hydrology, 547, 222–235. 10.1016/j.jhydrol.2017.01.055
Rao, P., Wang, F., Yuan, X., Liu, Y., & Jiao, Y. (2024). Evaluation and comparison of 11 sets of gridded precipitation products over the Qinghai-Tibet Plateau. Atmospheric Research, 302, 107315. https://doi.org/https://doi.org/10.1016/j.atmosres.2024.107315
Sahlu, D., Nikolopoulos, E. I., Moges, S. A., Anagnostou, E. N., & Hailu, D. (2016). First Evaluation of the Day-1 IMERG over the Upper Blue Nile Basin. Journal of Hydrometeorology, 17(11), 2875–2882. https://doi.org/10.1175/JHM-D-15-0230.1
Sharifi, E., Steinacker, R., & Saghafian, B. (2016). Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing, 8(2), 135. https://doi.org/10.3390/rs8020135
Tan, M. L., & Duan, Z. (2017). Assessment of GPM and TRMM precipitation products over Singapore. Remote Sensing, 9(7), 720. https://doi.org/10.3390/rs9070720
Tan, M. L., & Santo, H. (2018a). Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202, 63–76. https://doi.org/10.1016/j.atmosres.2017.11.006
Tan, M. L., & Santo, H. (2018b). Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202, 63–76. https://doi.org/10.1016/j.atmosres.2017.11.006
Tang, G., Ma, Y., Long, D., Zhong, L., & Hong, Y. (2016). Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology, 533, 152–167.
Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W., & Hong, Y. (2016). Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7? Journal of Hydrometeorology, 17(1), 121–137. https://doi.org/10.1175/JHM-D-15-0059.1
Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega, E., Machado, L. A. T., Angelis, C. F., Salio, P., Kidd, C., Huffman, G. J., & de Castro, M. (2012). Global precipitation measurement: Methods, datasets and applications. In Atmospheric Research, 104, 70–97.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar, F., & Sanz-Garcia, A. (2018). Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Solar Energy, 164, 339–354. https://doi.org/10.1016/j.solener.2018.02.059
Wang, W., Lin, H., Chen, N., & Chen, Z. (2021). Evaluation of multi-source precipitation products over the Yangtze River Basin. Atmospheric Research, 249, 105287. https://doi.org/10.1016/j.atmosres.2020.105287
Wang, W., Lu, H., Zhao, T., Jiang, L., & Shi, J. (2017). Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6), 2540–2549. https://doi.org/10.1109/JSTARS.2017.2672786
Wilheit, T. T. (1986). Some comments on passive microwave measurement of rain. Bulletin - American Meteorological Society. https://doi.org/10.1175/1520-0477
Wilks, D. (2011). Statistical methods in the atmospheric sciences.
Worqlul, A. W., Maathuis, B., Adem, A. A., Demissie, S. S., Langan, S., & Steenhuis, T. S. (2014). Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrology and Earth System Sciences, 18(12), 4871–4881. https://doi.org/10.5194/hess-18-4871-2014
Xie, P., & Xiong, A.-Y. Y. (2011). A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. 116. https://doi.org/10.1029/2011JD016118
Yuan, F., Zhang, L., Wah Win, K. W., Ren, L., Zhao, C., Zhu, Y., Jiang, S., & Liu, Y. (2017). Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data sparse mountainous watershed in Myanmar. Remote Sensing, 9(3), 302.